Appendix A

Initial Study, Notice of Preparation (NOP), and NOP Comments

Antelope Valley Community College District 2016 Facilities Master Plan

Initial Study – Notice of Preparation

prepared by

Antelope Valley Community College District 3041 West Avenue K Lancaster, California 93536-5426 Contact: Doug Jensen, Executive Director, Facilities Services

prepared with the assistance of

Rincon Consultants, Inc. 250 East 1st Street, Suite 301 Los Angeles, California 90012

July 2018

Antelope Valley Community College District 2016 Facilities Master Plan

Initial Study – Notice of Preparation

prepared by

Antelope Valley Community College District 3041 West Avenue K Lancaster, California 93536-5426 Contact: Doug Jensen, Executive Director, Facilities Services

prepared with the assistance of

Rincon Consultants, Inc. 250 East 1st Street, Suite 301 Los Angeles, California 90012

July 2018

This report prepared on 50% recycled paper with 50% post-consumer content.

Table of Contents

Initia	l Study	
:	1.	Project Title1
	2.	Lead Agency Name and Address1
2	3.	Contact Person and Phone Number1
4	4.	Project Location1
!	5.	Project Sponsor's Name and Address1
(6.	General Plan Designation1
-	7.	Zoning1
8	8.	Description of Project4
9	9.	Required Approvals
:	10.	Surrounding Land Uses and Setting8
	11.	Other Public Agencies Whose Approval is Required9
Envir	onmer	tal Factors Potentially Affected10
Dete	rminat	ion10
Envir	onmer	13 tal Checklist
	1	Aesthetics
	2	Agriculture and Forestry Resources17
	3	Air Quality
4	4	Biological Resources
ļ	5	Cultural Resources
(6	Geology and Soils
•	7	Greenhouse Gas Emissions
:	8	Hazards and Hazardous Materials
(9	Hydrology and Water Quality41
	10	Land Use and Planning45
	11	Mineral Resources47
	12	Noise
	13	Population and Housing55
	14	Public Services
	15	Recreation61
	16	Transportation/Traffic63
	17	Tribal Cultural Resources65
:	18	Utilities and Service Systems67
	19	Mandatory Findings of Significance71
Refer	ences	
	Bibliog	raphy73
I	List of	Preparers74

Tables

Table 1	Enrollment Patterns by Location	.4
Table 2	2016 FMP Projects	.7
Table 3	Health Effects Associated with Non-Attainment Criteria Pollutants	20
Table 4	City of Lancaster Compatible Noise and Land Use Compatibility Guidelines	51

Figures

Figure 1	Regional Location	.2
Figure 2	Project Site Location	.3
Figure 3	Existing AVC Campus Map	.5
Figure 4	2016 Facilities Master Plan Map	6

Appendices

Appendix A Notice of Preparation

Initial Study

1. Project Title

Antelope Valley Community College District 2016 Facilities Master Plan

2. Lead Agency Name and Address

Antelope Valley Community College District 3041 West Avenue K Lancaster, California 93536-5426

3. Contact Person and Phone Number

Doug Jensen, Executive Director, Facilities Services (661) 722-6526

4. Project Location

The project site is the Lancaster campus of Antelope Valley College (AVC), which is located at 3041 West Avenue K in the City of Lancaster, Los Angeles County, in the block of land between West Avenue K on the south, 35th Street West on the west, West Ave J8 on the north, and 30th Street West on the east. The project site is located about 2.5 miles southwest of downtown Lancaster, 7.5 miles northwest of downtown Palmdale, 12 miles east of the Antelope Valley Poppy Reserve, and 42 miles north of downtown Los Angeles. The project site is approximately 135 acres. Figure 1 shows the location of the site in the region and Figure 2 shows the project site in its local context.

5. Project Sponsor's Name and Address

Antelope Valley Community College District 3041 West Avenue K Lancaster, California 93536-5426

6. General Plan Designation

Public School (P,S)

7. Zoning

School (S)

Figure 1 Regional Location

Imagery provided by Esri and its licensors © 2018.

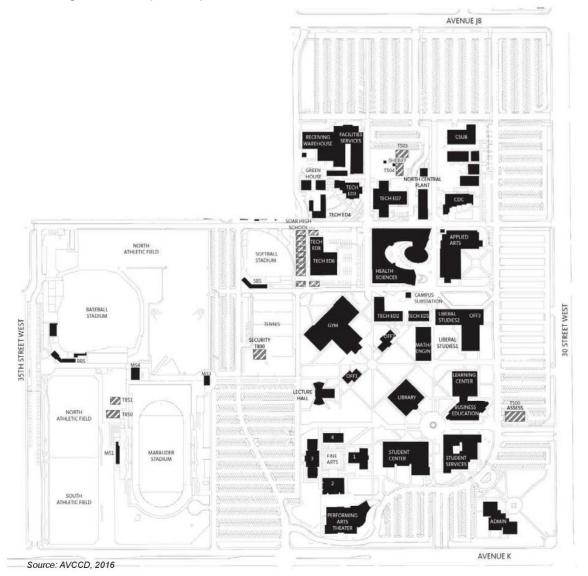
Figure 2 Project Site Location

Imagery provided by Google and its licensors © 2018.

8. Description of Project

The proposed project is an update of the Antelope Valley Community College District (AVCCD, or District) Facilities Master Plan (FMP), also known as the 2016 FMP. The 2016 FMP is guide for the future development of the Lancaster campus of AVCCD, also known as Antelope Valley College (AVC), and hereinafter also referred to as the project site. The District is one of 72 community college districts in California. The District consists of AVC's Lancaster campus; and the AVC Palmdale Center, a leased facility in central Palmdale. According to the 2016 FMP, the District supported 14,677 full-time equivalent students (FTES) in 2014 at both campuses, and is anticipated to accommodate 19,852 FTES by 2030, a total increase of 5,175 FTES (35.3%) an annual increase of approximately 323 FTES (2.2%) (AVCCD, 2016). These FTES increases are based on estimates of future demand for AVCCD's services. The 2016 FMP would accommodate, not cause, these projected FTES increases. FTES by campus are shown in Table 1.

Location	2014	2020	2025	2030	% Change	Annual % Change
Palmdale Center	902	1,099	1,293	1,428	58.3%	3.6%
Lancaster Campus	11,730	13,220	14,768	15,908	35.6%	2.2%
Both	2,045	2,136	2,279	2,516	23.0%	1.4%
Total	14,677	16,454	18,140	19,852	35.3%	2.2%
Source: AVCCD, 2016						


Table 1 Enrollment Patterns by Location

The 2016 FMP is a strategy for modifying the physical campus in Lancaster to accommodate growth and change over the next 30 years. The initial FMP for the Palmdale Center is presently being developed to support proposed expansion plans of the center and will be incorporated into the District Facilities Master Plan at a later date. The 2016 FMP is based on findings from the District's Educational Master Plan. It provides a guide for long-term land and building use, and serves as a guide for near-term decisions on program planning and implementation, resource allocation, setting priorities and other College administrative matters which influence the student educational experience at AVC (AVC, 2018).

The 2016 FMP presents an overall picture of the future developed campus and includes recommendations for new construction, building renovations, change of use, and site development projects. It recommends the demolition and replacement of a number of the oldest buildings on the campus. Functions currently housed in these facilities will be relocated to new or existing facilities and will be designed to support the new campus zoning diagram and address projected instructional program needs. Although the 2016 FMP does not specify an exact amount of new square footage that would be added to the AVC campus upon full implementation of the FMP, it does identify a need for additional assignable square feet (ASF) on campus (see page 22 of the FMP). ASF is the assignable or usable space within a building (AVCCD, 2016).

A map of AVC's current campus is shown in Figure 3. Projects included in the 2016 FMP are listed in Table 2 and shown in Figure 4.

Figure 3 Existing AVC Campus Map

TEMPORARY FACILITIES

Antelope Valley Community College District 2016 Facilities Master Plan

Figure 4 2016 Facilities Master Plan Map

FACILITIES MASTER PLAN

EXISTING FACILITIES PROPOSED NEW FACILITIES RENOVATION/CHANGE OF USE

Source: AVCCD, 2016

Demolition	Relocation	New Construction	Renovations/Change of Use
Student Services	T100	Academic Commons	Applied Arts
Student Center	T503	Arts Complex	Business Education
Fine Arts 1, 2, 3, 4	T504	Campus Security	Gymnasium
Learning Center	Т800	Community Center	Field House
Faculty Office 1, 2, and 3	T850	CSUB + University Center	
Lecture Hall	T851	CTE Instruction	
Liberal Studies 1 and 2		Field House	
Math/Engineering		Instruction Building 1 (IB1)	
Technical Education 1 and 2		Instruction Building 2 (IB2)	
Learning Center		Instruction Building 3 (IB3)	
SOAR High School		SOAR High School	
CSUB		Student Center	
		Student Services	

Table 2 2016 FMP Projects

Planning and Design

Planning and design decisions in the 2016 FMP are based on two themes:

- To respect and honor the history of the original Antelope Valley College campus
- To approach design of the overall campus in an authentic way which ties the campus to its specific place

The Campus Development Guidelines within the 2016 FMP provide a framework for the future design of site and facilities projects. They are intended to ensure the development of AVC as a cohesive campus while supporting creative expression and innovative design solutions for individual projects. The Development Guidelines include the following elements:

Campus Guidelines

The campus guidelines recommend a new landscape pattern using existing grid system of the campus and surrounding community and overlaying it with a secondary system inspired by the natural curvilinear patterns seen within river washes inherent to the Antelope Valley floor in which Lancaster is located. The existing linear north-south and east-west grid of campus walks forms the backbone of the proposed pedestrian circulation system, while the more organic secondary system (nicknamed the garden ribbon) meanders through the grid, helping to create and define the edges of exterior gathering and learning areas.

Landscape Guidelines

The landscape guidelines recommend that the existing campus grid of walkways be designed with a linear planting of shade trees, pedestrian lightings, and a variety of seating opportunities; while the

secondary pedestrian system along the garden ribbon is envisioned as a more passive system than the utilitarian pedestrian spines. The landscape guidelines include different landscape typologies for the project site, including pedestrian spines and walks, landscape field, courtyards, garden ribbon, student plaza, historic commons, community corner, and community engagement walks.

Building Guidelines

The primary purpose of the building guidelines is to define a set of general design criteria for all future buildings on the project site, including new construction, additions and renovations. The ultimate goal is to create a well-defined, consistent physical campus environment that strengthens the AVC identity, fosters intellectual and social exchange, and inspires the entire campus and surrounding community. These guidelines focus on these primary elements:

- Transform the AVC campus identity
- Create a strong sense of place for AVC
- Enhance AVC's students' pride
- Respect and enhance the AVC legacy through authentic design

The building guidelines provide guidance for placemaking, form, massing, wayfinding, façade articulation, materiality, color palette, and sustainability.

9. Required Approvals

The following entitlements are required for the proposed project:

Approval of the 2016 FMP by the AVCCD Board of Trustees

10. Surrounding Land Uses and Setting

The project site is located in the western portion of the City of Lancaster. As shown in Figure 2 and Figure 3, the project site is characterized by a central core of academic buildings set among areas landscaped with lawns and other ornamental vegetation, but with fewer lawn areas north of a line extending west from West Avenue J 12. This campus core is surrounded by perimeter parking lots fronting on the major streets that border the campus (except at the corner of West Avenue K and 30th Street West, which is occupied by the Administration Building and an area landscaped with lawn and trees), and athletic fields on the western edge of campus. Buildings on the project site are generally one to three stories in height, with some taller structures such as the Performing Arts Theater and athletic field lighting.

Areas surrounding the project site are mostly developed with residential subdivisions, although a considerable amount of undeveloped land also exists in this area. Other nearby uses include the following:

- Several elementary schools and a middle school exist within ½ mile of the project site
- The Seventh Day Adventist Church is located directly across 30th Street West from the project site, and the Church of Jesus Christ of Latter-Day Saints and the Bethel Baptist Church (including the Bethel Christian School) are located directly across West Avenue K from the project site

- The Prestige Assisted Living Center and the John P. Eliopolus Hellenic Center (an event center with banquet facilities) are located approximately 0.2 miles south of the southeastern corner of the project site on 30th Street West and West Avenue K 4
- Rawley Duntley Park is located directly across West Avenue K from the project site, with a strip
 of open space running along its western edge connecting to the Prime Desert Woodland
 Preserve located approximately ¼ mile to the south

Several parcels of land located on the south side of West Avenue K directly across from the project on either side of 30th Street West are zoned for commercial uses, but these parcels are currently undeveloped.

Buildings associated with these surrounding uses are generally one to two stories in height, with a few taller structures such as the church steeple/tower at the Church of Jesus Christ of Latter-Day Saints.

11. Other Public Agencies Whose Approval is Required

There are no other agencies than the lead agency from whom some facet of the project requires a permit/approval, along with the required permit/approval.

Environmental Factors Potentially Affected

This project would potentially affect the environmental factors checked below, involving at least one impact that is "Potentially Significant" or "Potentially Significant Unless Mitigation Incorporated" as indicated by the checklist on the following pages.

Aesthetics	Agriculture and Forestry Resources	Air Quality
Biological Resources	Cultural Resources	Geology and Soils
Greenhouse Gas Emissions	Hazards and Hazardous Materials	Hydrology and Water Quality
Land Use and Planning	Mineral Resources	Noise
Population and Housing	Public Services	Recreation
Transportation/Traffic	Tribal Cultural Resources	Utilities and Service Systems
Mandatory Findings of Significance		

Determination

Based on this initial evaluation:

- □ I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.
- I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions to the project have been made by or agreed to by the project proponent. A MITIGATED NEGATIVE DECLARATION will be prepared.
- I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.
- I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect (1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and (2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.

I find that although the proposed project could have a significant effect on the environment, because all potential significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR or NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

Signature

Printed Name

Date

ic Sent,

Title

This page intentionally left blank.

Environmental Checklist

1	Aesthetics				
		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
W	ould the project:				
a.	Have a substantial adverse effect on a scenic vista?	•			
b.	Substantially damage scenic resources, including but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?				
C.	Substantially degrade the existing visual character or quality of the site and its surroundings?	-			
d.	Create a new source of substantial light or glare that would adversely affect daytime or nighttime views in the area?				

a. Would the project have a substantial adverse effect on a scenic vista?

The project site is located in a mostly developed area within the City of Lancaster, within the Antelope Valley, which is characterized by flat desert landscapes framed by mountain ranges on the south and west. The nearest hillsides are located approximately 4.3 miles to the south. Views of these distant hills are available from some locations on and around the project site, although they are frequently blocked by buildings and trees.

Foreground views from the project site are of surrounding urban development. As explained in Section 9 of the Initial Study portion of this document, surrounding development is mostly residential, and surrounding buildings are generally one to two stories in height, with a few taller structures such as the church steeple/tower at the Church of Jesus Christ of Latter-Day Saints across West Avenue K from the project site. Foreground views through the project site are of the AVC campus, mostly consisting of views of the surface parking lots around the perimeter of the campus, with campus buildings in the background. On the west side of campus, views from off campus through the project site include views of the athletic fields in this area. Off-site uses near the southeastern corner of campus have the AVC Administration Building in the foreground of their view through the project site.

Page 2-7 of the *Plan for the Natural Environment* chapter of the City of Lancaster General Plan (City of Lancaster, 2009a) states that "Maintaining views of the mountains and the desert scenes has

been identified by local residents as important in defining community identity." Policy 3.8.1 of the General Plan is to "Preserve views of surrounding ridgelines, slope areas and hilltops, as well as other scenic vistas." Because the proposed project would involve construction of new buildings on campus, thereby altering the arrangement of built space and open space on and around the project site, it could potentially block views of ridgelines, slope areas, and hilltops. This impact is therefore potentially significant and will be further studied in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

b. Would the project substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings within a state scenic highway?

There are no designated state scenic highways in the vicinity of the project site. The nearest designated state scenic highway is State Route 2, the Angeles Crest Scenic Byway, located approximately 25 miles southeast of the site (Caltrans, 2018). The project site is not visible from this roadway, due to distance and intervening topography. Thus, the project site is not visible from any state scenic highway, and the proposed project would not directly damage or block the view of a scenic resource from a designated state scenic highway. There are no other specific, officially-designated scenic resources on or in the vicinity of the project site. The proposed project would therefore have no impact on scenic resources, and further analysis is not warranted.

NO IMPACT

c. Would the project substantially degrade the existing visual character or quality of the site and its surroundings?

As described in Section 9 of the Initial Study portion of this document, the project site's visual character is typical of a community college campus, with a central core of academic buildings set among areas landscaped with lawns and other ornamental vegetation, but with fewer lawn areas north of a line extending west from West Avenue J 12. This campus core is surrounded by perimeter parking lots fronting on the major streets that border the campus (except at the corner of West Avenue K and 30th Street West, which is occupied by the Administration Building and an area landscaped with lawn and trees), and athletic fields on the western edge of campus. Buildings on the project site are generally one to three stories in height, with some taller structures such as the Performing Arts Theater and athletic field lighting.

As also described in Section 9, areas surrounding the project site are mostly developed with residential subdivisions, although a considerable amount of undeveloped land also exists in this area. Other nearby uses include schools, churches, parks, a nature preserve, an assisted living center, an event center, and undeveloped land. Buildings in these areas are generally one to two stories in height, with a few taller structures such as the church steeple/tower at the Church of Jesus Christ of Latter-Day Saints.

As described under Planning and Design in Section 8 of the Initial Study portion of this document, The 2016 FMP is meant to respect and honor the history of the original Antelope Valley College campus, and to approach the design of the overall campus in an authentic way which ties the campus to its specific place, including its surroundings. Buildings included in the 2016 FMP would generally be of a similar scale as existing on-campus buildings, and implementation of the 2016 FMP would not expand the overall footprint of the campus or greatly expand the amount of built square footage on campus. The extent to which the 2016 FMP would achieve these goals must be assessed in more depth in order to determine whether or not implementation of the proposed project may substantially degrade the existing visual character or quality of the site and its surroundings. This impact is therefore potentially significant and will be further studied in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

d. Would the project create a new source of substantial light or glare which would adversely affect day or nighttime views in the area?

The project site is in an urbanized area with high levels of existing lighting. Primary sources of light on the project site include lighting associated with the existing campus buildings, including buildingmounted lighting, pathway lighting, and parking lot lighting. The primary source of glare on the project site is the sun's reflection from metallic and glass surfaces during the day, and from vehicle headlights at night. Adjacent buildings and roadway uses may generate light and glare along all sides of the project site, from both day-time reflected light from reflective building and vehicle surfaces, and from indoor and outdoor lighting and vehicle headlights at night.

The 2016 FMP includes elements that would introduce new sources of outdoor lighting, as well as indoor lighting that could spill into the outdoors, to the project site. These sources include exterior building lighting, pathway lighting, and interior building lighting shining from windows or other glazing. This lighting has the potential to spill over onto adjacent properties or roadways. Light from these sources could affect nearby light-sensitive receptors, such as residential uses. Headlights of vehicles entering, exiting, and driving on the project site could also affect nearby light-sensitive receptors. The windows and building materials on the exterior elevations of the proposed buildings could increase sources of reflected sunlight during certain times of the day, as could vehicles. These impacts are potentially significant and further analysis in an EIR is required.

POTENTIALLY SIGNIFICANT IMPACT

This page intentionally left blank.

2 Agriculture and Forestry Resources

		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
Wo	ould the project:				
a.	Convert Prime Farmland, Unique Farmland, Farmland of Statewide Importance (Farmland), as shown on maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?				
b.	Conflict with existing zoning for agricultural use or a Williamson Act contract?				
C.	Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code Section 12220(g)); timberland (as defined by Public Resources Code Section 4526); or timberland zoned Timberland Production (as defined by Government Code Section 51104(g))?				-
d.	Result in the loss of forest land or conversion of forest land to non-forest use?				•
e.	Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland to non-agricultural use or conversion of forest land to non-forest use?				•

- a. Would the project convert Prime Farmland, Unique Farmland, Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?
- *b.* Would the project conflict with existing zoning for agricultural use, or a Williamson Act contract?
- c. Would the project conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code Section 12220(g)), timberland (as defined by Public Resources Code Section 4526), or timberland zoned Timberland Production (as defined by Government Code Section 51104(g))?
- d. Would the project result in the loss of forest land or conversion of forest land to non-forest use?

e. Would the project involve other changes in the existing environment, which, due to their location or nature, could result in conversion of Farmland to non-agricultural use?

The project site is within an urbanized area in the City of Lancaster. No forest land, agricultural land, agriculturally zoned land, or land under Williamson Act contract exists in the vicinity of the project site (City of Lancaster, 2009b). The proposed project would have no effect on forestland or the conversion of farmland to non-agricultural uses. No impact would occur and further analysis of these issues is not warranted.

NO IMPACT

3 Air Quality

		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
Wo	ould the project:				
a.	Conflict with or obstruct implementation of the applicable air quality plan?	•			
b.	Violate any air quality standard or contribute substantially to an existing or projected air quality violation?				
C.	Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non- attainment under an applicable federal or state ambient air quality standard (including releasing emissions which exceed quantitative thresholds for ozone precursors)?	•			
d.	Expose sensitive receptors to substantial pollutant concentrations?	•			
e.	Create objectionable odors affecting a substantial number of people?			-	

Air Quality Standards and Attainment

The project site is located within the Mojave Desert Air Basin (MDAB), which is under the jurisdiction of the Antelope Valley Air Quality Management District (AVAQMD). As the local air quality management agency, the AVAQMD is required to monitor air pollutant levels to ensure that state and federal air quality standards are met and, if they are not met, to develop strategies to meet the standards (AVQMD, 2018).

Depending on whether or not the standards are met or exceeded, the MDAB is classified as being in "attainment" or "nonattainment." Under state law, air districts are required to prepare a plan for air quality improvement for pollutants for which the district is in non-compliance. The MDAB is in non-attainment for the state and federal ozone standards (and in severe nonattainment for the federal ozone standard for PM_{10} (particulate matter up to 10 microns in size). The MDAB is unclassified for the state $PM_{2.5}$ (particulate matter up to 2.5 microns in size) standard. The health effects associated with criteria pollutants for which the MDAB is in non-attainment are described in Table 3.

Pollutant	Adverse Effects
Ozone	(1) Short-term exposures: (a) pulmonary function decrements and localized lung edema in humans and animals and (b) risk to public health implied by alterations in pulmonary morphology and host defense in animals; (2) long-term exposures: risk to public health implied by altered connective tissue metabolism and altered pulmonary morphology in animals after long-term exposures and pulmonary function decrements in chronically exposed humans; (3) vegetation damage; and (4) property damage.
Suspended particulate matter (PM ₁₀)	 (1) Excess deaths from short-term and long-term exposures; (2) excess seasonal declines in pulmonary function, especially in children; (3) asthma exacerbation and possibly induction; (4) adverse birth outcomes including low birth weight; (5) increased infant mortality; (6) increased respiratory symptoms in children such as cough and bronchitis; and (7) increased hospitalization for both cardiovascular and respiratory disease (including asthma).^a

Table 3 Health Effects Associated with Non-Attainment Criteria Pollutants

^a More detailed discussions on the health effects associated with exposure to suspended particulate matter can be found in the following documents: EPA, Air Quality Criteria for Particulate Matter, October 2004. Source: U.S. EPA, <u>https://www.epa.gov/criteria-air-pollutants</u>

Air Quality Plans and Regulations

In the Los Angeles County portion of the MDAB, the AVAQMD is required to prepare a plan for improvement for the air pollutants for which the MDAB is in non-attainment. The AVAQMD has developed the following federal and State attainment planning documents (City of Lancaster, November 2017):

- 2004 Ozone Attainment Plan (State and federal attainment)
- List and Implementation Schedule for District Measures to Reduce PM (2005 State attainment)
- 8-Hour Reasonably Available Control Technology State Implementation Plan Analysis (2006 & 2015)
- Federal 8-Hour Ozone Attainment Plan (2008)
- 2014 Update to the Reasonably Available Control Technology State Implementation Plan

Through the attainment planning process, the AVAQMD has developed the following Rules and Regulations to regulate sources of air pollution in the Los Angeles County portion of the MDAB (City of Lancaster, 2017).

- Regulation II Permits. This regulation includes rule requirements for obtaining necessary
 permits to construct and operate that will be applicable to the proposed project's portable
 or stationary construction equipment with engines greater than 50 horsepower that do not
 have permits under the CARB PERP program.
- Rule 401 Visible Emissions. This rule prohibits discharge of air contaminants or other material, which are as dark or darker in shade as that designated No. 1 on the Ringelmann Chart.
- Rule 402 Nuisance. This rule prohibits discharge of air contaminants or other material that cause injury, detriment, nuisance, or annoyance to any considerable number of persons or to the public; or that endanger the comfort, repose, health, or safety of any such persons or the public; or that cause, or have a natural tendency to cause, injury or damage to business or property.

- **Rule 403 Fugitive Dust.** The purpose of this rule is to control the amount of PM entrained in the atmosphere from man-made sources of fugitive dust. The rule prohibits emissions of fugitive dust from any active operation, open storage pile, or disturbed surface area to be visible beyond the emission source's property line. This rule also requires other reasonable precautions be taken to minimize dust during construction activities and prevent track-out upon public roadways. These measures may include, adding freeboard to haul vehicles, covering loose material on haul vehicles, watering, using chemical stabilizers and/or ceasing all activities (such as during periods of high winds). In addition, a Dust Control Plan (DCP) would need to be submitted to the Air Pollution Control Officer (APCO) for approval if more than 5 acres would be disturbed or if more than 2,500 cubic yards of material will be excavated per day for at least three days (for each phase of the project as applicable). The DCP requirements necessary to comply with Rule 403 were revised in 2016. These revisions include requiring the contractor to meet on-site with a AVAQMD Field Inspector to review the DCP requirements prior to earthmoving/site clearing activities and follow the control measures approved in the DCP during construction, as well as requiring renewable energy projects to complete active operations DCP applications that require the operator to address dust control issue complaints during operation.
- Rule 1110.2 Internal Combustion Engines. This rule establishes emissions limits for stationary, nonroad, and portable internal combustion engines rated at 50 or more brake horsepower (bhp). Permitting non-road and portable equipment through the CARB PERP program provide compliance with this rule.
- Rule 1113 Architectural Coatings. This rule limits the volatile organic compound (VOC) content of paints applied to various surfaces that would be applicable to any construction painting operation.
- Rule 1166 Volatile Organic Compound Emissions from Decontamination of Soil. This rule sets requirements to control emissions from excavating, grading, handling and treating VOCcontaminated soils that may be encountered during project construction. The project site does not have known contamination issues. Regardless if VOC contaminated soils are discovered during project construction, this rule would apply and the proposed project would have to comply with applicable parts of this rule.

Significance Thresholds

The AVAQMD, in their *California Environmental Quality Act (CEQA) and Federal Conformity Guidelines* document, recommends air quality analysis methodologies and establishes recommended CEQA significance thresholds for emissions from construction (daily thresholds) and operation (annual/yearly thresholds) for applicable criteria pollutant emissions as follows (City of Lancaster, November 2017):

- Carbon Monoxide (CO) 548 pounds per day, 100 tons per year
- Oxides of Nitrogen (NOx) 137 pounds per day, 25 tons per year
- Volatile Organic Compounds (VOC) 137 pounds per day, 25 tons per year
- Oxides of Sulfur (SOx) 137 pounds per day, 25 tons per year
- Particulate Matter (PM10) 82 pounds per day, 15 tons per year
- Particulate Matter (PM2.5) 82 pounds per day, 15 tons per year

- a. Would the project conflict with or obstruct implementation of the applicable air quality plan?
- b. Would the project violate any air quality standard or contribute substantially to an existing or projected air quality violation?
- c. Would the project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?

Emissions generated by the proposed project would include temporary construction emissions and long-term operational emissions. Project construction would generate temporary air pollutant emissions associated with fugitive dust (PM_{10} and $PM_{2.5}$) and exhaust emissions from heavy construction vehicles, in addition to reactive organic gases (ROG) that would be released during the drying phase upon application of architectural coatings. It is assumed that the proposed project would comply with all applicable AVAQMD rules regarding construction, including those listed in the *Air Quality Plans and Regulations* section above.

The 2016 FMP includes four implementation phases. Construction would occur during each of these phases, beginning as early as 2019 through approximately the end of the 2016 FMP planning period in 2030. As stated in the 2016 FMP, the final design of each site and facility project will take place as projects are funded and detailed programming and design occurs. The exact schedule for the final design of each project is thus not known. Design would necessarily precede construction, so an exact construction schedule by project is thus also not known. Construction would generally consist of demolition, grading, building construction, paving, and architectural coating.

Long-term emissions associated with operation of the uses included in the 2016 FMP would include emissions from vehicle trips (mobile sources), natural gas and electricity use (energy sources), and landscape maintenance equipment, consumer products, and architectural coating associated with onsite development (area sources).

Emissions from construction and operation of the project listed in the 2016 FMP have the potential to exceed AVAQMD significance thresholds and conflict with or obstruct implementation of the applicable air quality plan, but further analysis is required to quantify the emissions associated with construction and operation of these projects. This impact is therefore potentially significant and emissions related to the construction and operation of the project will be further analyzed in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

d. Would the project expose sensitive receptors to substantial pollutant concentrations?

Certain communities or population groups, such as children, the elderly, and people with health problems, are particularly sensitive to air pollution. Sensitive receptors are defined as land uses that are more likely to be used by these population groups and include health care facilities, retirement homes, school and playground facilities, and residential areas. The sensitive receptor nearest to the project site include the Bethel Christian School, which is located directly across West Avenue K from the project site, as is Rawley Duntley Park. As discussed in Section 9 of the Initial Study portion of this document, other schools, as well as an assisted living center, are located within ½ mile of the site. Due to the project site's proximity to these uses, project-related construction and operational emissions may expose sensitive receptors to substantial pollutant concentrations. This impact is therefore potentially significant and will be further analyzed in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

e. Would the project create objectionable odors affecting a substantial number of people?

The educational uses proposed in the 2016 FMP are similar to those already existing on the site. Substantial objectionable odors are normally associated with such uses as agriculture, wastewater treatment, industrial facilities, or landfills, none of which are included in the 2016 FMP. The proposed project would therefore have a less than significant impact related to creation of objectionable odors, and further analysis of this issue is not warranted.

LESS THAN SIGNIFICANT IMPACT

This page intentionally left blank.

4 Biological Resources

	Less than Significant		
Potentially	with	Less than	
Significant Impact	Mitigation Incorporated	Significant Impact	No Impact

Would the project:

- a. Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?
- b. Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?
- c. Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?
- d. Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?
- e. Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?
- f. Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

-		
•		
		•
-		
•		
		•

- a. Would the project have a substantial adverse effect, either directly or through habitat modifications, on any species identified as candidate, sensitive, or special status in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or the U.S. Fish and Wildlife Service?
- b. Would the project have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service?
- d. Would the project interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?

The project site is located in an urbanized area and does not contain native biological habitat but, given that there is a substantial amount of open (although developed) space on the project site, the potential for special-status species to occur on the project site cannot be completely ruled out. The 2030 General Plan Master Environmental Assessment (City of Lancaster, 2009b) identifies numerous special-status species that occur within the General Plan study area. As shown on Figure 3-3 of this document, an area to the southwest of the project site, apparently corresponding to the location of the Prime Desert Woodland Preserve, is characterized as containing Joshua Tree Woodland habitat. The CDFG considers the Joshua tree woodland as a threatened habitat within California. It is also recognized as a sensitive habitat by the City of Lancaster. The Prime Desert Woodland Preserve is one of the most significant existing Joshua tree stands in the General Plan study area (City of Lancaster, 2009b). While no direct impacts to this area are expected from the proposed project, given that it is neither on nor directly adjacent to the project site, indirect impacts cannot be ruled out. This area may also have the potential to act as a wildlife movement corridor connecting to other undeveloped lands, including the undeveloped area to the west of Rawley Duntley Park and the undeveloped land on the west side of the project site. These impact are therefore potentially significant, and will be further analyzed in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

c. Would the project have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means?

The project site is not located on or in the vicinity of a federally protected wetland (USFWS, 2018). No impact would occur and further analysis of this issue is not warranted.

NO IMPACT

e. Would the project conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?

Objective 3.4 of the Lancaster General Plan (City of Lancaster, 2009a) is the following: Identify, preserve and maintain important biological systems within the Lancaster sphere of influence, and educate the general public about these resources, which include the Joshua Tree - California Juniper Woodlands, areas that support endangered or sensitive species, and other natural areas of regional significance. Policy 3.4.1, and the specific actions listed under it, are meant to help achieve this objective. Because, as discussed above, the proposed project may have a potentially significant effect on Joshua Tree woodlands, it also has the potential to conflict with this policy. This impact is therefore potentially significant, and the proposed project's potential to conflict with this and any

other applicable local policies or ordinances protecting biological resources will be further analyzed in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

f. Would the project conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan?

The project site is not located within an area that is subject to an adopted conservation plan (City of Lancaster, 2009a, 2009b). No impact would occur and further analysis of this issue is not warranted.

NO IMPACT

This page intentionally left blank.

5 Cultural Resources

	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
Would the project:				
 Cause a substantial adverse change in the significance of a historical resource as defined in §15064.5? 				
b. Cause a substantial adverse change in the significance of an archaeological resource as defined in §15064.5?				
c. Directly or indirectly destroy a unique paleontological resource or site or unique geological feature?				
d. Disturb any human remains, including those interred outside of formal cemeteries?				

The California Environmental Quality Act (CEQA) requires a lead agency determine whether a project may have a significant effect on historical resources (Public Resources Code [PRC], Section 21084.1) and tribal cultural resources (PRC Section 21074 [a][1][A]-[B]). A historical resource is a resource listed in, or determined to be eligible for listing, in the California Register of Historical Resources (CRHR), a resource included in a local register of historical resources, or any object, building, structure, site, area, place, record, or manuscript that a lead agency determines to be historically significant (State CEQA Guidelines, Section 15064.5[a][1-3]).

A resource shall be considered historically significant if it:

- 1. Is associated with events that have made a significant contribution to the broad patterns of California's history and cultural heritage;
- 2. Is associated with the lives of persons important in our past;
- 3. Embodies the distinctive characteristics of a type, period, region, or method of construction, or represents the work of an important creative individual, or possesses high artistic values; or
- 4. Has yielded, or may be likely to yield, information important in prehistory or history.

In addition, if it can be demonstrated that a project would cause damage to a unique archaeological resource, the lead agency may require reasonable efforts be made to permit any or all of these resources to be preserved in place or left in an undisturbed state. To the extent that resources cannot be left undisturbed, mitigation measures are required (PRC, Section 21083.2[a], [b]).

PRC, Section 21083.2(g) defines a unique archaeological resource as an archaeological artifact, object, or site about which it can be clearly demonstrated that, without merely adding to the current body of knowledge, there is a high probability that it:

- 1. Contains information needed to answer important scientific research questions and that there is a demonstrable public interest in that information;
- 2. Has a special and particular quality such as being the oldest of its type or the best available example of its type; or
- 3. Is directly associated with a scientifically recognized important prehistoric or historic event or person.
- a. Would the project cause a substantial adverse change in the significance of a historical resource as defined in §15064.5?

AVC has occupied the project site since 1961, making some buildings on campus over 50 years old. Given their age, and the important role that AVC has played in the community, on-campus buildings and other features may have historical significance. The 2016 FMP would lead to demolition or relocation of some existing buildings on campus, and construction of new facilities that could alter the setting of on-campus buildings and other features with potential historical significance. Further investigation is required to determine if the 2016 FMP would affect historic resources on the project site or adjacent properties as defined under the California Public Resources Code § 15064.5. This impact is therefore potentially significant, and this issue will be further addressed in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

- b. Would the project cause a substantial adverse change in the significance of an archaeological resource as defined in §15064.5?
- *c.* Would the project directly or indirectly destroy a unique paleontological resource or site or unique geological feature?
- d. Would the project disturb any human remains, including those interred outside of formal cemeteries?

The project site is located in an urbanized area of Lancaster that has generally been subject to previous disturbance. The project site is developed, and there is no evidence that archaeological or paleontological resources or human remains are present onsite. In the unlikely event that such resources are unearthed during excavation and grading, applicable regulatory requirements pertaining to the handling and treatment of such resources would be followed. If archaeological or paleontological resources are identified, as defined by Section 2103.2 of the Public Resources Code, the site would be required to be treated in accordance with the provisions of Section 21083.2 of the Public Resources Code as appropriate. If human remains are unearthed, State Health and Safety Code Section 7050.5 requires that no further disturbance shall occur until the County Coroner has made the necessary findings as to origin and disposition pursuant to Public Resources Code Section 5097.98. However, further investigation as to whether the project site or adjacent properties contain any archaeological or paleontological resources, human remains, or tribal cultural resources (further discussed in Section 17 of this Environmental Checklist) is required in order to determine the potential significance of this impact, and these issues will be further addressed in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

6 Geology and Soils

			Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
Wo	bluc	the project:				
a.	sub	ose people or structures to potentially stantial adverse effects, including the of loss, injury, or death involving:				
	1.	Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?			•	
	2.	Strong seismic ground shaking?			-	
	3.	Seismic-related ground failure, including liquefaction?			•	
	4.	Landslides?				•
b.		ult in substantial soil erosion or the of topsoil?				
c.	is m pro offs	ocated on a geologic unit or soil that nade unstable as a result of the ject, and potentially result in on or ite landslide, lateral spreading, sidence, liquefaction, or collapse?			•	
d.	in T (19	ocated on expansive soil, as defined able 1-B of the Uniform Building Code 94), creating substantial risks to life or perty?				
e.	sup alte whe	re soils incapable of adequately porting the use of septic tanks or rnative wastewater disposal systems ere sewers are not available for the posal of wastewater?				•

- a.1. Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault?
- a.3. Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving seismic-related ground failure, including liquefaction?

The Alquist-Priolo Earthquake Fault Zoning Act's main purpose is to prevent the construction of buildings used for human occupancy on the surface trace of active faults. The Act only addresses the hazard of surface fault rupture and is not directed toward other earthquake hazards. The law requires the State Geologist to establish regulatory zones (known as Earthquake Fault Zones) around the surface traces of active faults and to issue appropriate maps, known as Alquist-Priolo (AP) maps (California Department of Conservation, 2017). According to the Lancaster West Quadrangle AP map that covers the project site (California Department of Conservation, 2005), the project site is not located within or near an Alquist-Priolo (AP) fault zone, or on a known fault. No other seismic hazards (such as liquefaction zones or earthquake-induced landslide zones) are shown on or near the project site on this map. This impact would therefore be less than significant, and further analysis of this issue is not warranted.

LESS THAN SIGNIFICANT IMPACT

a.4. Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving landslides?

The flat topography of the project site and its surroundings rules out potential impacts related to landslides. No impact would occur and further analysis of this issue is not warranted.

NO IMPACT

a.2. Expose people or structures to potential substantial adverse effects, including the risk of loss, injury, or death involving strong seismic ground shaking?

There are several active earthquakes faults near Lancaster, the most significant of which is the San Andreas Fault, located approximately 5.5 miles southwest of the project site. Other active faults in the area include the Garlock Fault Zone, the Sierra Madre-San Fernando Fault Zones, and the Sierra Nevada (Owens Valley) Fault Zone. As with any site in the southern California region, the project site is susceptible to strong seismic ground shaking in the event of a major earthquake. These faults are capable of producing strong seismic ground shaking at the project site. For example, the maximum probable magnitude (or Moment magnitude) for the San Andreas Fault is 8.0+, with a recurrence interval of 50-200 years; and the Moment magnitude for the Garlock Fault is 7.5, with a recurrence interval of 500-700 years (City of Lancaster, 2009b).

On-site structures would be required to be constructed to comply with the California Building Code (CBC). Several geotechnical investigations have been conducted by United-Heider Inspection Group for construction projects at AVC which are included in the proposed 2016 FMP, including reports for the proposed Academic Commons Building, Community Center Building, CTE Building, and Photovoltaic Panel Array Structures, among others (United-Heider Inspection Group, 2017). These reports include recommendations for measures to comply with CBC Seismic Design Parameters, and have found that seismic ground shaking effects can be adequately addressed for each facility with incorporation of the recommended measures for each facility. Therefore, with adherence to the CBC and the recommendations of site-specific geotechnical reports, the facilities included in the

proposed project would be engineered to withstand the expected ground acceleration that may occur at the project site. In addition, project construction would be subject to review and approval by the Department of General Service's - Division of the State Architect (DSA) to ensure proper safety guidelines and all applicable buildings codes are adhered to. This impact is therefore less than significant, and further analysis of this issue is not warranted.

LESS THAN SIGNIFICANT IMPACT

b. Would the project result in substantial soil erosion or the loss of topsoil?

Because the project site is already developed, a substantial amount of impermeable surfaces already exist on the site. As can be seen by comparing Figure 3 to Figure 4, the developed area of the project site would not substantially change under the proposed project. The proposed project would therefore not lead to a substantial change in the amount of impermeable surfaces on the project site, and substantial changes in runoff patterns or rates would not occur.

Any construction project carried out the proposed project would be comply with the NPDES Multiple Separate Storm Sewer System (MS4) Permit issued by the Los Angeles Regional Water Quality Control Board, including implementation of Best Management Practices (BMPs) to reduce polluted runoff from the project site by retaining, treating, or infiltrating polluted runoff onsite. This would also help prevent increased runoff from the project site onto surrounding areas that could cause soil erosion or the loss of topsoil. Construction projects carried out under the 2016 FMP would submit a Dust Control Plan, in accordance with AVAQMD Rule 403, to the AVAQMD for review and approval.

For the reasons discussed above, the proposed project would have a less than significant impact related to soil erosion or the loss of topsoil, and further analysis of this issue is not warranted.

LESS THAN SIGNIFICANT IMPACT

- c. Would the project be located on a geologic unit or soil that is made unstable as a result of the project, and potentially result in on or offsite landslide, lateral spreading, subsidence, liquefaction, or collapse?
- d. Would the project be located on expansive soil, as defined in Table 1-B of the Uniform Building Code (1994), creating substantial risks to life or property?

Subsidence is the sudden sinking or gradual downward settling of the earth's surface with little or no horizontal movement. Subsidence is caused by a variety of activities, which include, but are not limited to, withdrawal of groundwater, pumping of oil and gas from underground, the collapse of underground mines, liquefaction, and hydrocompaction. Lateral spreading is the horizontal movement or spreading of soil toward an open face. The potential for failure from subsidence and lateral spreading is highest in areas where the groundwater table is high and where relatively soft and recent alluvial deposits exist. Lateral spreading hazards may also be present in areas with liquefaction risks. Expansive soils are generally clays, which increase in volume when saturated and shrink when dried. As shown on Figure 2-3 of the Master Environmental Assessment for the City's General Plan, certain parts of Lancaster are located on soils with a moderate shrink-swell potential, and some areas have experienced sinkholes or fissures due to subsidence, but the project site is not in or near one of these areas (City of Lancaster, 2009b).

On-site structures would be required to be constructed to comply with the CBC. In addition, as discussed in Impact a, the DSA would provide design and construction oversight, review, and

approval for all construction plans proposed by AVC. The DSA has accessibility, structural safety, and historical buildings codes that the project would be required to adhere to. Lastly, several geotechnical investigations have been conducted by United-Heider Inspection Group for construction projects at AVC which are included in the proposed 2016 FMP, including reports for the proposed Academic Commons Building, Community Center Building, CTE Building, and Photovoltaic Panel Array Structures, among others (United-Heider Inspection Group, 2017). These reports include recommendations to avoid soil instability issues with specific construction projects, as necessary.

With adherence to the CBC, review and approval by the DSA, and compliance with recommendations in site-specific geotechnical reports, design and construction of the facilities included in the proposed project would be engineered to withstand any soil instability issues that may occur at the project site. These impacts are therefore less than significant, and further analysis of this issue is not warranted.

LESS THAN SIGNIFICANT IMPACT

e. Would the project have soils incapable of adequately supporting the use of septic tanks or alternative wastewater disposal systems where sewers are not available for the disposal of wastewater?

The project site is fully served by municipal utilities, including sewer, and would not use septic tanks or alternative wastewater disposal systems. No impact would occur and further analysis of this issue is not warranted.

Greenhouse Gas Emissions

		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
W	ould the project:				
a.	Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?				
b.	Conflict with any applicable plan, policy, or regulation adopted for the purposes of reducing the emissions of greenhouse gases?				

Climate change is the observed increase in the average temperature of the earth's atmosphere and oceans along with other substantial changes in climate (such as wind patterns, precipitation, and storms) over an extended period. Climate change is the result of numerous, cumulative sources of greenhouse gases (GHG), which contribute to the "greenhouse effect," a natural occurrence that helps regulate the temperature of the planet. The majority of radiation from the sun hits the earth's surface and warms it. The surface in turn radiates heat back towards the atmosphere, known as infrared radiation. Gases and clouds in the atmosphere trap and prevent some of this heat from escaping into space and re-radiate it in all directions. This process is essential to support life on Earth because it warms the planet by approximately 60° Fahrenheit. Emissions from human activities since the beginning of the industrial revolution (approximately 250 years ago) are adding to the natural greenhouse effect by increasing the gases in the atmosphere that trap heat and contribute to an average increase in Earth's temperature.

GHGs occur naturally and from human activities. Human activities that produce GHGs include fossil fuel burning (coal, oil, and natural gas for heating and electricity, gasoline and diesel for transportation); methane generated by landfill wastes and raising livestock; deforestation activities; and some agricultural practices. GHGs produced by human activities include carbon dioxide (CO2), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFC), perfluorocarbons (PFC), and sulfur hexafluoride (SF6). Since 1750, estimated concentrations of CO₂, CH₄, and N₂O in the atmosphere have increased over by 36 percent, 148 percent, and 18 percent respectively, primarily due to human activity. Emissions of GHGs affect the atmosphere directly by changing its chemical composition. Changes to the land surface indirectly affect the atmosphere by changing the way in the Earth absorbs gases from the atmosphere. Potential impacts in California of global warming may include loss of snow pack, sea level rise, more extreme heat days per year, more high ozone days, more large forest fires, and more drought years (California Energy Commission [CEC] 2009).

a. Would the project generate GHG emissions, either directly or indirectly, that may have a significant impact on the environment?

Many local air pollution control agencies in California have proposed numerical or other GHG significance criteria. The AVAQMD, which has local regulatory authority over air pollutant emissions,

has established a recommended CEQA-significant emissions level for addressing GHG emissions of 100,000 tons CO2e per year or 548,000 CO2e per day (AVAQMD, 2016; p. 7). However, the AVAQMD does not currently have any additional CEQA guidelines related to assessing GHG impacts or have current or proposed new specific local regulations related to GHG emissions (City of Lancaster, 2017).

The project's proposed construction activities, energy use, daily operational activities, and mobile sources (traffic) would generate GHG emissions. Project-related construction emissions are confined to a relatively short period of time in relation to the overall life of the proposed project. Operational Emissions include area sources (consumer products, landscape maintenance equipment, and painting), energy use (electricity and natural gas), solid waste, electricity to deliver water, and transportation emissions.

In order to fully and accurately account for the proposed project's emissions in all these categories, and compare them to applicable CEQA thresholds, the project's emissions must be modeled based on details related to construction schedule, construction equipment, and building materials; energy use during operation; and transportation emissions based on the results of a traffic study (see Section 16, Transportation, of this Environmental Checklist). Emissions related to construction and operation of the proposed project are therefore potentially significant, and will be modeled and evaluated in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

b. Would the project conflict with any applicable plan, policy, or regulation adopted for the purpose of reducing the emissions of greenhouse gases?

Many jurisdictions within California have adopted climate change plans or climate action plans. The City of Lancaster's Climate Action Plan (CAP) was adopted in March 2017. Lancaster's CAP includes a GHG emissions inventory, GHG emissions forecasts, proposed GHG emissions reduction measures by sector, and an implementation plan (City of Lancaster, 2016). The proposed project would be consistent with the City's CAP if it includes provisions to implement the applicable CAP GHG reduction measures. Consistency with the applicable measures will be evaluated in an EIR. The GHG analysis included in the EIR will consider court direction provided in the Newhall decisions; the 2030 statewide 40 percent GHG emissions reductions targets in Senate Bill 32, which took effect January 1 2017; and the ARB's Scoping Plan, which was adopted in December 2017 (ARB, December 2017). The EIR will also analyze consistency with applicable GHG reduction policies from other applicable plans, such as the Southern California Association of Government's Sustainable Communities Strategy/Regional Transportation Plan (SCAG's RTP/SCS).

POTENTIALLY SIGNIFICANT IMPACT

8 Hazards and Hazardous Materials

	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
Would the project:				
a. Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?				
b. Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?				
 c. Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within 0.25 mile of an existing or proposed school? 				
d. Be located on a site that is included on a list of hazardous material sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?	-			
e. For a project located in an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?				•
f. For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?				•

		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
g.	Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?				
h.	Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?				•

- a. Would the project create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?
- b. Would the project create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?
- c. Would the project emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within 0.25 mile of an existing or proposed school?

The proposed project would involve demolition and relocation of existing buildings, and construction of new buildings over the approximately 16-year span of the 2016 FMP. The proposed uses may involve the routine transport, use or disposal of hazardous substances typically associated with the operation of a community college, such as fuels for on-campus vehicles, chemicals for science classes, cleaning supplies, chlorine or bromine for pools, etc. Additionally, current uses on the project site, and soils beneath the project site, may contain hazardous materials such as asbestos or lead in buildings and contaminated soils. Demolition of buildings may release asbestos or lead, and excavation could release hazardous materials in contaminated soils. Because there are several schools located in the vicinity of the project site, including at least one school within ¼ mile (the Bethel Christian School, located directly across West Avenue K from the project site), the proposed project has the potential to emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within 0.25 mile of an existing or proposed school. These possible hazards represent potentially significant impacts and will be further analyzed in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

d. Would the project be located on a site included on a list of hazardous material sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?

In order to determine the potential significance of this impact, it is necessary to conduct a standard record search from federal, state, county and City environmental record sources for known hazardous materials contamination at the project site; assess applicable Phase I environmental assessments (ESA) or other technical reports that may be available from the City, applicant, or other

property owners in the study area; and examine files readily available from online databases, the Los Angeles County Fire Department, and the Regional Water Quality Control Board concerning past contamination spills and/or cleanup activities. Further analysis of this issue in an EIR is therefore required.

POTENTIALLY SIGNIFICANT IMPACT

- e. For a project located within an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?
- *f.* For a project near a private airstrip, would it result in a safety hazard for people residing or working in the project area?

The project site is not located within an are covered by an airport land use plan, or within two miles of a public airport or private airstrip. The closest airports or airstrips are the General William J. Fox Airfield, located approximately four miles to the northwest, and Palmdale Regional Airport, located approximately five miles to the southeast. No impact would occur and further analysis of these issues is not warranted.

NO IMPACT

g. Would the project impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?

The proposed project involves development in an urbanized area of Lancaster. While the project site generally has good vehicular access, the proposed project may result in an intensification of development on the project site, and increased traffic in the area. While the project would be required to comply with applicable California Fire Code requirements, the mix of proposed uses and emergency access to them after development may affect emergency response and emergency access. For these reasons, the proposed uses, including the details of ingress and egress and their effect on local traffic patterns, must be evaluated to determine the significance of this impact. These issues are therefore potentially significant and will be further addressed in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

h. Would the project expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?

The project site is in an urbanized area and not adjacent to wildlands, and the Lancaster General Plan does not identify any wildland hazard areas in the vicinity (City of Lancaster, 2009b). Therefore, no impact would occur and further analysis of these issues is not warranted.

This page intentionally left blank.

9 Hydrology and Water Quality

		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
W	ould the project:				
a.	Violate any water quality standards or waste discharge requirements?			•	
b.	Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering or the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level that would not support existing land uses or planned uses for which permits have been granted)?			•	
C.	Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner that would result in substantial erosion or siltation on- or off-site?				
d.	Substantially alter the existing drainage pattern of the site or area, including the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding on- or off-site?				
e.	Create or contribute runoff water that would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?				
f.	Otherwise substantially degrade water quality?			-	

		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
g.	Place housing in a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary, Flood Insurance Rate Map, or other flood hazard delineation map?				•
h.	Place structures in a 100-year flood hazard area that would impede or redirect flood flows?				
i.	Expose people or structures to a significant risk of loss, injury, or death involving flooding, including that occurring as a result of the failure of a levee or dam?				
j.	Result in inundation by seiche, tsunami, or mudflow?				

- a. Would the project violate any water quality standards or waste discharge requirements?
- e. Would the project create or contribute runoff water that would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?
- f. Would the project otherwise substantially degrade water quality?

Implementation of the proposed project would involve demolition, new construction, building renovations, change of use, and site development projects but, as can be seen by comparing Figure 3 to Figure 4, the developed area of the project site would not substantially change under the proposed project. The proposed project would therefore not lead to a permanent, substantial change in the amount of impermeable surfaces or changes in drainage patterns on the project site, and permanent, substantial changes in runoff patterns or rates would not occur.

Temporary changes in drainage patterns can also occur during construction of projects, creating the potential to temporarily increase the amount of runoff, including polluted runoff. Storm water can carry with it pollutants such as: oil, pesticides, herbicides, sediment, trash, bacteria and metals and can then drain directly into surface water bodies. The proposed project would comply with the NPDES Multiple Separate Storm Sewer System (MS4) Permit issued by the Los Angeles Regional Water Quality Control Board, including implementation of Best Management Practices (BMPs) to avoid such impacts. BMPs would reduce polluted runoff from the project site by retaining, treating, or infiltrating polluted runoff onsite. Additionally, construction projects disturbing 1 or more acres are required to obtain coverage under the statewide National Pollutant Discharge Elimination System (NPDES) General Permit for Discharges of Storm Water Associated with Construction Activity Construction General Permit Order 2009-0009-DWQ. This is administered by the State Water

Resources Control Board (SWRCB). The applicant would also prepare a Storm Water Pollution Prevention Plan (SWPPP) that complies with the statewide permit.

For all the reasons discussed above, implementation of the proposed project would not violate any water quality standards or waste discharge requirements, create or contribute runoff water that would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff, or otherwise substantially degrade water quality. These impacts would therefore be less than significant, and further analysis of this issue is not warranted.

LESS THAN SIGNIFICANT IMPACT

b. Would the project substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level that would not support existing land uses or planned uses for which permits have been granted)?

The Antelope Valley is located in a desert environment and underlain by a closed groundwater basin. The two primary sources of supply to the valley are imported water from the State Water Project (SWP) via the California aqueduct and groundwater extracted from the Antelope Valley groundwater basin. Water service to the project site would be provided by Los Angeles County Water Works District 40 (City of Lancaster, 2009b. Figure 10.1-2).

Implementation of the proposed project would involve an increase in the total amount of waterconsuming facilities on the project site, but the 2016 FMP also includes water-saving features, such as plans for drought-tolerant and low water use landscaping. The Antelope Valley groundwater basin is in a state of overdraft. Records indicate that extraction has continued beyond the safe-yield levels, causing areas of land subsidence and the loss of basin (aquifer) storage (City of Lancaster, 2009b). Although implementation of the proposed project may incrementally increase water consumption (see Section 18, Utilities and Service Systems, of this Environmental Checklist), the proposed project includes water conservation features and would not receive its water exclusively from groundwater supplies. Any increase in water consumption associated with the proposed project would therefore not be sufficiently substantial to deplete groundwater supplies. This impact would be less than significant, and further analysis of this issue is not warranted.

LESS THAN SIGNIFICANT IMPACT

- c. Would the project substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner that would result in substantial erosion or siltation on- or off-site?
- d. Would the project substantially alter the existing drainage pattern of the site or area, including the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding on- or off-site?

As discussed under Impact 9.a, e, f above, the developed area of the project site would not substantially change under the proposed project, and substantial changes in runoff patterns or rates would not occur. Potential impacts from temporary changes in drainage patterns due to construction would be addressed through compliance with the storm water quality regulations

discussed under Impact 9.a, e, f. This impact would be less than significant, and further analysis of this issue is not warranted.

LESS THAN SIGNIFICANT IMPACT

- g. Would the project place housing in a 100-year flood hazard area as mapped on a federal Flood Hazard Boundary, Flood Insurance Rate Map, or other flood hazard delineation map?
- *h.* Would the project place structures in a 100-year flood hazard area that would impede or redirect flood flows?

The project site is not in a 100-year flood hazard area, as mapped on the FEMA flood maps for this portion of Lancaster (Department of Homeland Security, September 2008). As shown on the FEMA flood maps, it is in Zone X, Areas of 0.2% annual chance flood (also known as the 500-year floodplain). The proposed project would therefore have no impact in this regard and further analysis of these issues is not warranted.

NO IMPACT

i. Would the project expose people or structures to a significant risk of loss, injury, or death involving flooding, including that occurring as a result of the failure of a levee or dam?

According to the Master Environmental Assessment for the 2030 General Plan (City of Lancaster, 2009b), the California Aqueduct and Little Rock Reservoir present some risk of overflow. In the event of a major earthquake, the Aqueduct might be breached. During such a break, millions of gallons of water could spill north across the western portion of the study area. Failure of the Little Rock Dam would result in the inundation of a large area north of the dam. However, Little Rock dam was improved in 1994 to meet seismic requirements, reducing the risk of this potential hazard to a less than significant level. Also, Action 4.1.1(f) of the General Plan is to Assist and encourage the efforts of the State and local entities responsible for regular maintenance of the California Aqueduct and the Little Rock Dam to reduce the risk of seismic failure and to ensure that water levels are kept at or below the designed safe water levels, thereby reducing the risk of overtopping. For these reasons, and because the project site is located approximately 4.5 miles from the Aqueduct and approximately 16 miles from Little Rock Dam, this impact would be less than significant and further analysis of these issues is not warranted.

LESS THAN SIGNIFICANT IMPACT

j. Would the project result in inundation by seiche, tsunami, or mudflow?

The project site is located approximately 50 miles from the Pacific Ocean, at an elevation of approximately 2,400 feet above sea level, and thus would not be subject to inundation by tsunami. It is also not located sufficiently near any other large inland body of water for seiche to be a potential hazard. The project site is also not located in or near any hillside areas where mudflow could be a hazard, the nearest hillside areas being approximately five miles to the southwest. The proposed project would therefore have no impact related to these issues, and further analysis of these issues is not warranted.

10 Land Use and Planning

		Potentially Significant	Less than Significant with Mitigation	Less than Significant	
		Impact	Incorporated	Impact	No Impact
Wo	ould the project:				
a.	Physically divide an established community?				•
b.	Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?				•
C.	Conflict with an applicable habitat conservation plan or natural community conservation plan?				•

a. Would the project physically divide an established community?

The proposed project is a plan for the future development of AVC, on a site that is already developed. The project does not include new roads or other facilities that would physically divide the community. There would be no impact in this regard and further analysis of this issue is not warranted.

NO IMPACT

b. Would the project conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?

The City of Lancaster establishes land use policy and practice in Lancaster through its General Plan and Municipal Code. The proposed project would not change the land use on the project site, which would continue to be a community college campus. As listed in Section 6 and Section 7 of the Initial Study portion of this document, the project site's zoning and land use designation are consistent with its use as a school.

Another policy documents with relevance and applicability to the proposed project is the Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS) of the Southern California Association of Governments (SCAG). SCAG functions as the federally recognized Metropolitan Planning Organization (MPO) for Los Angeles, Orange, San Bernardino, Riverside, Ventura, and Imperial Counties (SCAG Region). As the MPO, SCAG develops long-range regional transportation plans (RTPs) in cooperation with the California Department of Transportation (Caltrans) and the U.S. Department of Transportation (US DOT). Utilizing much of the same regional data, it also prepares and/or assists other agencies in developing the state-required regional Sustainable Communities Strategy (SCS); population, housing, and employment growth forecasts; regional transportation improvement programs; regional housing needs allocations (RHNA); and air quality management plans.

Although SCAG has no direct land use authority, generalized land use planning consistency between local jurisdictions and SCAG is required by state law for purposes of meeting state-required environmental quality goals and/or for eligibility for a wide range of transportation and other types of intergovernmental grants and funding programs that have long-range positive environmental impacts. In already-developed areas, the RTP/SCS largely incorporates local land use plans provided to SCAG by local jurisdictions during development of the SCS/RTP. Because the proposed project is consistent with existing uses and Lancaster's land use plan, it would also be generally consistent with the RTP/SCS in terms of land use.

SCAG's 2016 RTP/SCS includes the following foundational policies, which are intended to guide the development of member jurisdictions' land use strategies:

- 1. Identify regional strategic areas for infill and investment
- 2. Structure the plan on a three-tiered system of centers development
- 3. Develop "Complete Communities"
- 4. Develop nodes on a corridor
- 5. Plan for additional housing and jobs near transit
- 6. Plan for changing demand in types of housing
- 7. Continue to protect stable, existing single-family areas
- 8. Ensure adequate access to open space and preservation of habitat
- 9. Incorporate local input and feedback on future growth.

Because the proposed project is a plan for the future development of an existing community college campus in an already-developed area, but would not expand the physical boundaries of this campus, the proposed project is a form of infill development, which is consistent with foundational policy #1 of SCAG's 2016 RTP/SCS, which is to identify regional strategic areas for infill and investment. The proposed project has no features that would conflict with any of the foundational policies of SCAG's 2016 RTP/SCS. The proposed project would therefore not conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including but not limited to the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect. No impact would occur and further analysis of this issue is not warranted.

NO IMPACT

c. Would the project conflict with an applicable habitat conservation plan or natural community conservation plan?

The project site is not located within an area that is subject to an adopted conservation plan (City of Lancaster, 2009a, 2009b). No impact would occur and further analysis of this issue is not warranted.

11 Mineral Resources

		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
Wo	ould the project:				
a.	Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				
b.	Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land	_			_
	use plan?				

- a. Would the project result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?
- b. Would the project result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?

The project site is already developed, and is not in an area of known mineral resources (City of Lancaster, 2009b). No impact would occur and further analysis of this issue is not warranted.

This page intentionally left blank.

12 Noise

		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
W	ould the project result in:				
a.	Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?				
b.	Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?	•			
c.	A substantial permanent increase in ambient noise levels above those existing prior to implementation of the project?	•			
d.	A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?	•			
e.	For a project located in an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?				
f.	For a project near a private airstrip, would it expose people residing or working in the project area to excessive noise?				

Noise is unwanted sound that disturbs human activity. Environmental noise levels typically fluctuate over time, and different types of noise descriptors are used to account for this variability. Noise level measurements include intensity, frequency, and duration, as well as time of occurrence. Noise level (or volume) is generally measured in decibels (dB) using the A-weighted sound pressure level (dBA). Because of the way the human ear works, a sound must be about 10 dBA greater than the reference sound to be judged as twice as loud. In general, a 3 dBA change in community noise levels is noticeable, while 1-2 dBA changes generally are not perceived. Quiet suburban areas typically have noise levels in the range of 40-50 dBA, while arterial streets are in the 50-60+ dBA range.

Normal conversational levels are in the 60-65 dBA range, and ambient noise levels greater than 65 dBA can interrupt conversations.

Noise levels typically attenuate (or drop off) at a rate of 6 dBA per doubling of distance from point sources (such as construction equipment). Noise from lightly traveled roads typically attenuates at a rate of about 4.5 dBA per doubling of distance. Noise from heavily traveled roads typically attenuates at about 3 dBA per doubling of distance; while noise from a point source typically attenuates at about 6 dBA per doubling of distance. Noise levels may also be reduced by the introduction of intervening structures. For example, a single row of buildings between the receptor and the noise source reduces the noise level by about 5 dBA, while a solid wall or berm that breaks the line-of-sight reduces noise levels by 5 to 10 dBA. The construction style for dwelling units in California generally provides a reduction of exterior-to-interior noise levels of about 30 dBA with closed windows (FTA, 2006).

Some land uses are more sensitive to ambient noise levels than other uses due to the amount of noise exposure and the types of activities involved. For example, residences, motels, hotels, schools, libraries, churches, nursing homes, auditoriums, museums, cultural facilities, parks, and outdoor recreation areas are more sensitive to noise than commercial and industrial land uses. The noise-sensitive receptors closest to the project site are residences, schools, and churches located on all sides of the project site (see Section 10 of the Initial Study portion of this document).

Vibration is a unique form of noise because its energy is carried through buildings, structures, and the ground, whereas sound is simply carried through the air. Thus, vibration is generally felt rather than heard. Some vibration effects can be caused by noise (e.g., the rattling of windows from passing trucks). This phenomenon is caused by the coupling of the acoustic energy at frequencies that are close to the resonant frequency of the material being vibrated. Typically, ground-borne vibration generated by manmade activities attenuates rapidly as distance from the source of the vibration increases. The ground motion caused by vibration is measured as particle velocity in inches per second and is measured in vibration decibels (VdB).

The vibration velocity level threshold of perception for humans is approximately 65 VdB. A vibration velocity of 75 VdB is the approximate dividing line between barely perceptible and distinctly perceptible levels for many people. Most perceptible indoor vibration is caused by sources inside buildings such as the operation of mechanical equipment, movement of people, or the slamming of doors. Typical outdoor sources of perceptible ground-borne vibration are construction equipment, steel-wheeled trains, and traffic on rough roads.

Vibration impacts would be significant if they exceed the following Federal Transit Administration (FTA) thresholds (FTA, 2006):

- 65 VdB where low ambient vibration is essential for interior operations, such as hospitals and recording studios
- 72 VdB for residences and buildings where people normally sleep, including hotels
- 75 VdB for institutional land uses with primary daytime use, such as churches and schools
- 95 VdB for physical damage to extremely fragile historic buildings
- 100 VdB for physical damage to buildings

In addition to the groundborne vibration thresholds outlined above, the FTA outlined human response to different levels of groundborne vibration and determined that vibration that is 85 VdB is acceptable only if there are an infrequent number of events per day.

The City of Lancaster adopted its Plan for Public Health and Safety, which includes all the necessary information and analysis to comply with the State requirements for the Noise Element of a General Plan, in July 2009. The Noise section of the Plan for Public Health and Safety provides a description of existing noise levels and sources in the community. It also includes Objective 4.3, which is to promote noise compatible land use relationships by implementing the noise standards identified in Table 4 (Table 3-1 of the General Plan) to be utilized for design purposes in new development, and establishing a program to attenuate existing noise problems. The Noise section also includes comprehensive goals, policies, and implementing actions to help achieve this objective.

Land Use	Maximum Exterior CNEL (dBA)	Maximum Interior CNEL (dBA)
Rural, Single Family, Multiple Family Residential	65	45
Schools		
Classrooms	65	45
Playgrounds	70	-
Libraries	-	50
Hospitals/Convalescent Facilities		
Living Areas	-	50
Sleeping Areas	-	40
Commercial and Industrial	70	-
Office Areas	_	50
Source: City of Lancaster, 2009a		

To implement the City's noise policies, the City adopted a Noise Regulations (also known as the Noise Ordinance), which are contained in Chapter 8.24 of the City's Municipal Code (City of Lancaster, 2018). The Lancaster Noise Ordinance has no numerical standards, but prohibits loud, unnecessary and unusual noises within City limits. It also prohibits construction, including operation of certain construction equipment and any other machine, tool, device or equipment making loud noises within 500 feet of an occupied dwelling, apartment, hotel, mobile home or other place of residence, at any time on Sunday or any day between the hours of eight p.m. and seven a.m., with certain exceptions (Sections 8.24.040 and 8.24.050).

The City has not adopted any thresholds or regulations addressing vibration. Vibration is a unique form of noise because its energy is carried through buildings, structures, and the ground, whereas noise is simply carried through the air. Thus, vibration is generally felt rather than heard. The ground motion caused by vibration is measured as particle velocity in inches per second and is referenced as vibration decibels (VdB) in the U.S.

The most common sources of noise in the project site vicinity are transportation-related, such as automobiles, trucks, buses and motorcycles. Motor vehicle noise is of concern because it is characterized by a high number of individual events, which often create a sustained noise level, and

because of its proximity to areas sensitive to noise exposure. Other sources of noise in the vicinity include noise from temporary events, such as crowd noise at athletic events at AVC's Marauder Stadium.

- a. Would the project result in exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?
- *b.* Would the project result in exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?
- c. Would the project result in a substantial permanent increase in ambient noise levels above levels existing without the project?
- *d.* Would the project result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?

The proposed project could generate temporary noise increases during construction and long-term increases associated with project operation.

Construction would be required to comply with Section 8.24.040 of the Lancaster Municipal Code, which, as explained above, forbids construction at any time on Sunday or any day between the hours of eight p.m. and seven a.m, with certain exceptions. With compliance with this ordinance, project-related construction would not occur during recognized sleep hours for residences. However, other noise-sensitive uses, such as schools, exist adjacent to and nearby the project site, and temporary construction noise during hours allowed by the Municipal Code could negatively affect these sensitive receptors. Temporary construction noise impacts will therefore be evaluated in an EIR.

Existing uses near the project site may periodically be subject to noises associated with operation of the proposed project, including noise that is typical of a community college, such as conversations, music, delivery trucks, crowd noise (including occasional outdoor athletic events), and noise associated with rooftop ventilation and heating systems and other mechanical equipment. The project would be required to comply with applicable regulations of the City of Lancaster, including Section 8.24.030 of the Municipal Code, which prohibits loud, unnecessary, and unusual noises that are physically annoying or discomforting to persons of ordinary sensitiveness or would occasion physical discomfort to the inhabitants of any neighborhood. Nevertheless, the potential impacts of the proposed project in this regard require further analysis to determine if they would be consistent with these regulations. Potential impacts to noise-sensitive receptors from operation of the proposed project would therefore be potentially significant and will also be analyzed in an EIR.

The proposed project would also contribute to noise related to vehicular movement, since it would contribute to an increase in the number of vehicle trips to and from the project site. Long-term noise impacts associated with increased vehicle traffic will therefore also be evaluated in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

- e. For a project located in an airport land use plan or, where such a plan has not been adopted, within two miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?
- *f.* For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise?

The project site is not located within an area covered by an airport land use plan, or within two miles of a public airport or private airstrip. The closest airports or airstrips are the General William J. Fox Airfield, located approximately four miles to the northwest, and Palmdale Regional Airport, located approximately five miles to the southeast. No impact would occur and further analysis of these issues is not warranted.

This page intentionally left blank.

13 Population and Housing

	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
Would the project:				
 Induce substantial population growth in an area, either directly (e.g., by proposing new homes and businesses) or indirectly (e.g., through extension of roads or other infrastructure)? 	-			•
b. Displace substantial amounts of existing housing, necessitating the construction of replacement housing elsewhere?	f			•
c. Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?				•

- a. Would the project induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?
- b. Would the project displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?

As explained at the beginning of Section 8 of the Initial Study portion of this document, while the 2016 FMP would accommodate an increase in FTES at AVC, this FTES increase is based on estimates of future demand for AVCCD's services, and the 2016 FMP would accommodate, not cause, this increase. The proposed project does not include any residential component, and would not extend roads or other infrastructure into new areas. It would therefore not directly or indirectly induce substantial population growth in the area. It would also not involve displacement of any existing housing or people. The proposed project would therefore have no impact related to population and housing, and further analysis of these issues is not warranted.

This page intentionally left blank.

14 Public Services

			Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a.	adv the gov fac cau in c rat	build the project result in substantial verse physical impacts associated with e provision of new or physically altered vernmental facilities, or the need for w or physically altered governmental ilities, the construction of which could use significant environmental impacts, order to maintain acceptable service ios, response times or other formance objectives for any of the plic services:				
	1	Fire protection?			-	
	2	Police protection?			•	
	3	Schools?			•	
	4	Parks?			•	
	5	Other public facilities?				

a.1. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered fire protection facilities, or the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives?

The City of Lancaster contracts with the Los Angeles County Fire Department for fire and paramedic services. There are currently six fire stations within the City of Lancaster, as well as one in the unincorporated community of Antelope Acres and one in the unincorporated community of Quartz Hill. Of these six fire stations, the closest to the project site is Los Angeles County Fire Department Station 134, located at 43225 25th Street West, approximately one mile from the project site. Services provided from this and the City's other fire stations include fire suppression, fire prevention, paramedic response, swift water rescue, and hazardous materials response (City of Lancaster, 2017). The project site is within the service area of this station (City of Lancaster, 2009b, Figure 9.1-1).

Policy 4.7.1 of the Lancaster General Plan is to ensure that an adequate number of fire stations and adequate firefighting equipment and personnel are provided to protect the citizens and businesses of the City of Lancaster. The General Plan includes several specific actions to implement this policy, including Action 4.7.1(c), which requires the City to involve fire department personnel in the development review process for all new development proposals through participation in the

Development Review Committee and by referring development requests to the Los Angeles County Fire Department for review and comment. Because the proposed project would accommodate, not cause, population growth (see Section 13, Population and Housing), it would not create the need for new or physically altered fire protection facilities that could cause significant environmental impacts. Nevertheless, AVC would still be required to comply with these policies and actions for all projects carried out under the proposed 2016 FMP. Impacts related to provision of fire protection facilities would therefore be less than significant, and further analysis of these issues is not warranted.

LESS THAN SIGNIFICANT IMPACT

a.2. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered police protection facilities, or the need for new or physically altered police protection facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives?

The City of Lancaster contracts with the Los Angeles County Sheriff's Department (LASD) for police services. The Lancaster Sheriff's station is located approximately three miles northeast of the project site, at 501 West Lancaster Boulevard in downtown Lancaster. The Lancaster Station has 189 sworn personnel and 74 civilian personnel assigned to cover an area of more than 600 square miles, including the City of Lancaster, and the communities of Lake Los Angeles, Quartz Hill, and Antelope Acres. Law enforcement services are provided for over 190,000 residents (City of Lancaster, 2017).

Because the proposed project would accommodate, not cause, population growth (see Section 13, Population and Housing), it would not create the need for new or physically altered police protection facilities that could cause significant environmental impacts. Impacts related to provision of police protection facilities would therefore be less than significant, and further analysis of these issues is not warranted.

LESS THAN SIGNIFICANT IMPACT

a.3. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered schools, or the need for new or physically altered schools, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives?

The City of Lancaster is served by four public school districts: Antelope Valley Union High School District (AVUHSD), Eastside Union School District (EUSD), Lancaster School District (LSD), and the Westside Union School District (WUSD) (City of Lancaster, 2009b). While implementation of the proposed project would itself result in the physical alteration of a school (AVC), any physical effects of the project are analyzed throughout the Environmental Checklist portion of this Initial Study, and in some cases will also be analyzed in an EIR. Because the proposed project would accommodate, not cause, population growth (see Section 4.11.12, *Population and Housing*), it would not create the need for any other new or physically altered schools, and accordingly, would not generate construction that has the potential to cause significant environmental impacts. Thus, impacts to parks, schools, and other governmental facilities (including schools) would be less than significant.

LESS THAN SIGNIFICANT IMPACT

a.4. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered parks, or the need for new or physically altered parks, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios or other performance objectives?

Parks and recreational facilities are made available to Lancaster residents through the Department of Parks, Recreation, and Arts. The State of California, County of Los Angeles, the City of Lancaster, and private groups provide and operate recreation facilities in the north Antelope Valley area, which includes the City of Lancaster and General Plan study area. The park closest to the project site is Rawley-Duntley Park, which is located directly across West Avenue K from the project site. The park consists of 19 acres, which include four acres dedicated to Desert Woodland open space and seven acres pending future park development. Facilities provided at Rawley Duntley include an open play area, children's play area, picnic facilities and group picnic area, basketball courts, two baseball fields, and volleyball courts (City of Lancaster, 2009b).

Because the proposed project would accommodate, not cause, population growth (see Section 13, Population and Housing), it would not create the need for new or physically altered parks that could cause significant environmental impacts. Impacts related to provision of parks would therefore be less than significant, and further analysis of these issues is not warranted.

LESS THAN SIGNIFICANT IMPACT

a.5. Would the project result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities, or the need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times or other performance objectives for other public facilities?

Public library services in Lancaster are provided by the Los Angeles County Public Library system. The Los Angeles County Public Library first opened the Lancaster Community Library on October 19, 1912 at Antelope Valley High School. Over the years, the Community Library relocated to several locations. Currently, the Los Angeles County Public Library operates two facilities available to the public within the study area, which include the Lancaster Regional Library and the Quartz Hill Community Library. Lancaster Regional Library, the larger of the two County Public libraries, was opened in 1996 and occupies 48,721 square feet of floor space at 601 West Lancaster Boulevard in downtown Lancaster, approximately 2.9 miles northeast of the project site. The Quartz Hill occupies 12,514 square feet of floor space at 5040 West Avenue M-2 in Quart Hill, approximately 2.8 miles southwest of the project site. These libraries offer not only books and other publications, but also online collections, audio books, downloadable music, streaming movies, audiobooks, and music, live homework help, and children's areas (City of Lancaster, 2009b; County of Los Angeles Public Library, 2018a, 2018b).

The proposed project would accommodate an expansion of AVC in response to future demand for its services. AVC currently includes an on-campus library, and would continue to do so under the proposed project. In fact, the 2016 FMP identifies 9,741 ASF of additional library space (AVCCD, 2016).

Because the proposed project would accommodate, not cause, population growth (see Section 13, Population and Housing), it would not create the need for new or physically altered public libraries or other governmental facilities that could cause significant environmental impacts. Impacts related

to provision of governmental facilities would therefore be less than significant, and further analysis of these issues is not warranted.

LESS THAN SIGNIFICANT IMPACT

15 Recreation

		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
a.	Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?				
b.	Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?				-

a. Would the project increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?

As discussed under Item 14.a.4, the proposed project would not substantially increase demand for parks. It would therefore not increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated. This impact would be less than significant, and further analysis of these issues is not warranted.

LESS THAN SIGNIFICANT IMPACT

b. Does the project include recreational facilities or require the construction or expansion of recreational facilities which might have an adverse physical effect on the environment?

As listed in Table 2 and shown in Figure 4, the 2016 FMP does include plans for future new or renovated recreational facilities, including a new Field House and a renovated Gymnasium. Space for the new Field House will be created by relocating existing modular buildings. The new Field House will meet accessibility requirements for restrooms, locker rooms, first-aid & training rooms and equipment areas for the athletic complex. The facility will support community and college events. The existing gymnasium was built in 1961 and is in poor condition. The FMP recommends a complete renovation of the existing facility to correct building deficiencies and address the current and projected kinesiology program needs (AVCCD, 2016).

The potential environmental effects of these proposed facilities are part of the overall environmental effects of the proposed project, which are analyzed throughout this Initial Study and has been found to either have no impact, a less than significant impact, or potentially significant impacts that will be further studied in an EIR. The proposed recreational facilities would have no separate environmental impacts which might have an adverse physical effect on the environment. There would be no impact in this regard and further analysis of these issues is not warranted.

This page intentionally left blank.

16 Transportation/Traffic

	Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
Would the project:				

a. Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation, including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways, and freeways, pedestrian and bicycle paths, and mass transit?

- b. Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?
- c. Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?
- d. Substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible use (e.g., farm equipment)?
- e. Result in inadequate emergency access?
- f. Conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise substantially decrease the performance or safety of such facilities?

res f				
ed				
d	•			
lot d				
5,	•			
ts				•
ole	-			
;? r	•			
2	_	_	_	_

- a. Would the project conflict with an applicable plan, ordinance or policy establishing a measure of effectiveness for the performance of the circulation system, taking into account all modes of transportation, including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways, and freeways, pedestrian and bicycle paths, and mass transit?
- b. Would the project conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?
- d. Would the project substantially increase hazards due to a design feature (e.g., sharp curves or dangerous intersections) or incompatible use (e.g., farm equipment)?
- e. Would the project result in inadequate emergency access?
- *f.* Would the project conflict with adopted policies, plans, or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise substantially decrease the performance or safety of such facilities?

The increased enrollment on the AVC campus associated with the proposed project could increase vehicular traffic to and from the project site, as well as demand for transit. Increased traffic, as well as changes in circulation patterns included in the proposed project (such as relocating the campus's main entrance to 30th Street West rather than West Avenue K), or prompted by the proposed project, may adversely affect operation of the local circulation system. Therefore, the project has the potential to conflict with applicable transportation plans or policies, substantially increase hazards due to a design feature, result in inadequate emergency access, or decrease the performance or safety of bikeways and pedestrian facilities. These are potentially significant impacts and will be further studied in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

c. Would the project result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?

The project site is not located within an area covered by an airport land use plan. The closest airports or airstrips are the General William J. Fox Airfield, located approximately four miles to the northwest, and Palmdale Regional Airport, located approximately five miles to the southeast. There are no elements of the proposed project that would increase or change the location of air traffic, and the 2016 FMP does not include any exceptionally tall facilities or facilities that would otherwise pose a hazard to aviation. No impact would occur and further analysis of these issues is not warranted.

17 Tribal Cultural Resources

	Less than Significant		
Potenti	ally with	Less than	
Signific	ant Mitigation	Significant	
Impa	ct Incorporated	Impact	No Impact

Would the project cause a substantial adverse change in the significance of a tribal cultural resource, defined in a Public Resources Code section 21074 as either a site, feature, place, cultural landscape that is geographically defined in terms of the size and scope of the landscape, sacred place, or object with cultural value to a California Native American tribe, and that is:

a.	Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or	•		
b.	A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Cod Section 2024.1. In applying the criteria set forth in subdivision (c) of Public Resources Code Section 5024.1, the lead agency shall consider the significant of the resource to a California Native American tribe.	•		

As of July 1, 2015, California Assembly Bill 52 of 2014 (AB 52) was enacted and expands CEQA by defining a new resource category, "tribal cultural resources." AB 52 establishes that "A project with an effect that may cause a substantial adverse change in the significance of a tribal cultural resource is a project that may have a significant effect on the environment" (PRC Section 21084.2). It further states that the lead agency shall establish measures to avoid impacts that would alter the significant characteristics of a tribal cultural resource, when feasible (PRC Section 21084.3).

PRC Section 21074 (a)(1)(A) and (B) defines tribal cultural resources as "sites, features, places, cultural landscapes, sacred places, and objects with cultural value to a California Native American tribe" and is:

- 1. Listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k), or
- 2. A resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 5024.1. In applying these criteria, the lead agency shall consider the significance of the resource to a California Native American tribe.

AB 52 also establishes a formal consultation process for California tribes regarding those resources. The consultation process must be completed before a CEQA document can be certified. Under AB 52, lead agencies are required to "begin consultation with a California Native American tribe that is traditionally and culturally affiliated with the geographic area of the proposed project." Native American tribes to be included in the process are those that have requested notice of projects proposed within the jurisdiction of the lead agency.

- a. Would the project cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code 21074 that is listed or eligible for listing in the California Register of Historical Resources, or in a local register of historical resources as defined in Public Resources Code section 5020.1(k)?
- b. Would the project cause a substantial adverse change in the significance of a tribal cultural resource as defined in Public Resources Code 21074 that is a resource determined by the lead agency, in its discretion and supported by substantial evidence, to be significant pursuant to criteria set forth in subdivision (c) of Public Resources Code Section 2024.1?

The project site has been previously graded and disturbed during construction of the existing structures. For this reason, no tribal cultural resources are anticipated to be discovered during construction. However, the possibility that that new ground disturbance associated with construction of projects included in the 2016 FMP could encounter previously undiscovered tribal cultural resources cannot be completely ruled out. This impact is therefore potentially significant, and will be further studied in an EIR, which will also include the results of the AB 52 consultation process that will be undertaken by the lead agency.

POTENTIALLY SIGNIFICANT IMPACT

18 Utilities and Service Systems

		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
W	ould the project:				
a.	Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?	-			
b.	Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				
c.	Require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				•
d.	Have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?	•			
e.	Result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?	-			
f.	Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?				
g.	Comply with federal, state, and local statutes and regulations related to solid waste?	•			

- a. Would the project exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?
- b. Would the project require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

e. Would the project result in a determination by the wastewater treatment provider which serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?

Collection, treatment, and disposal of wastewater within the City of Lancaster and adjacent unincorporated areas are under the jurisdiction of County Sanitation District No. 14 of Los Angeles County (District No. 14). District No. 14 owns and maintains the trunk sewers and Lancaster Wastewater Reclamation Plant (LWRP), which convey and treat wastewater generated by residential, commercial and industrial areas of the City of Lancaster, as well as portions of the City of Palmdale and unincorporated County. Local sewer collection is provided by the small diameter pipelines owned by the City of Lancaster (City of Lancaster, 2009b).

Because the proposed project would represent an intensification of use on the project site compared to existing conditions, it would increase wastewater generation. Such an increase could potentially exceed wastewater treatment capabilities. This impact is potentially significant, and will be analyzed in an EIR, which will calculate current wastewater generation and the project's wastewater generation, and compare any increase to the available capacity of wastewater systems serving the project site and the City.

POTENTIALLY SIGNIFICANT IMPACT

c. Would the project require or result in the construction of new storm water drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?

As discussed under Item a, e, f, in Section 9, Hydrology and Water Quality, of this Environmental Checklist, the proposed project would not create or contribute runoff water that would exceed the capacity of existing or planned storm water drainage systems. No new storm water drainage facilities would be required. No impact would occur and further analysis of these issues is not warranted.

NO IMPACT

d. Would the project have sufficient water supplies available to serve the project from existing entitlements and resources, or are new or expanded entitlements needed?

The Antelope Valley is located in a desert environment and underlain by a closed groundwater basin. The two primary sources of supply to the valley are imported water from the State Water Project (SWP) via the California aqueduct and groundwater extracted from the Antelope Valley groundwater basin. The Antelope Valley basin is in a state of overdraft. Records indicate that extraction has continued beyond the safe-yield levels, causing areas of land subsidence and the loss of basin (aquifer) storage (City of Lancaster, 2009b). Water service to the project site would be provided by Los Angeles County Water Works District 40 (City of Lancaster, 2009b. Figure 10.1-2).

Implementation of the proposed project would involve an increase in the total amount of waterconsuming facilities on the project site. Although the 2016 FMP also includes water-saving features, such as plans for drought-tolerant and low water use landscaping, the increase in the total amount of facilities and FTES may increase water consumption. Such an increase could potentially exceed, or substantially contribute to an exceedance of, local supplies. This impact is potentially significant and will be analyzed in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

- *f.* Would the project be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?
- g. Would the project comply with federal, state, and local statutes and regulations related to solid waste?

Waste Management of Antelope Valley is currently the sole franchise private hauler serving the City of Lancaster for waste collection. The Lancaster Landfill and Antelope Valley Landfill are two landfill sites located in the Antelope Valley. Both sites are in the process of expanding to accommodate increasing waste generation. Nearly 100 percent of Lancaster's solid waste is taken to one of these landfills; however, other regional landfills in Los Angeles County also accept solid waste from the City (City of Lancaster, 2017).

Senate Bill (SB) 1016 requires that the 50 percent diversion requirement mandated by Assembly Bill (AB) 939 be measured in terms of pounds per person per day (ppd), instead of by volume or as an aggregate measure separate from population. CalRecycle sets a target for resident and employee per capita per day disposal rates. In Lancaster, the target for residents is 6.4 ppd and 23.2 ppd for employees. In 2015 the per capita disposal rate per resident in Lancaster was 3.9 ppd, and the per capita disposal rate per employee was 15.1 ppd (CalRecycle, 1995, 2018). Lancaster has therefore achieved both the resident and employee targets set by CalRecycle.

Because the proposed project would intensify development on the project site compared to existing conditions, it would increase waste generation compared to existing conditions. This increase could exceed the capacity of solid waste disposal facilities. This is a potentially significant impact that will be studied further in an EIR, which will compare the project's solid waste generation to available landfill capacities and waste reduction mandates.

POTENTIALLY SIGNIFICANT IMPACT

This page intentionally left blank.

19 Mandatory Findings of Significance

		Potentially Significant Impact	Less than Significant with Mitigation Incorporated	Less than Significant Impact	No Impact
Do	Does the project:				
a.	Have the potential to substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?	•			
b.	Have impacts that are individually limited, but cumulatively considerable?				

- limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?
- c. Have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?
- a. Does the project have the potential to substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal or eliminate important examples of the major periods of California history or prehistory?

As discussed in Section IV, Biological Resources of this Environmental Checklist, although the project site is in an urbanized area, the proposed project has the potential to significantly impact biological resources, since the project site is near areas with known sensitive biological resources, with potential connectivity to the project site. As explained in Section 5, Cultural Resources, the proposed project's impacts to cultural resources are potentially significant. These impacts will be studied further in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

b. Does the project have impacts that are individually limited, but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?

As described in the discussion of Environmental Checklist Sections 1 through 18, the proposed project has potentially significant impacts requiring further analysis in an EIR for the following environmental issues: aesthetics, air quality, biological resources, cultural resources, greenhouse gas emissions, hazards and hazardous materials, noise, transportation/traffic, and utilities and service systems. The potential cumulative impacts of these environmental issues are therefore also potentially significant and will be studied in an EIR.

POTENTIALLY SIGNIFICANT IMPACT

c. Does the project have environmental effects which will cause substantial adverse effects on human beings, either directly or indirectly?

In general, impacts to human beings are associated with air quality, hazards and hazardous materials, and noise impacts. As detailed throughout the Environmental Checklist portion of this Initial Study, the proposed project has potentially significant impacts related to each of these issues. These impacts will therefore be studied further in an EIR in order to determine whether or not the project would result, either directly or indirectly, in adverse hazards related to human beings.

POTENTIALLY SIGNIFICANT IMPACT

References

Bibliography

- Antelope Valley Air Quality Management District (AVAQMD). AVAQMD website. 2018. <u>http://avaqmd.ca.gov/</u>. Accessed March 2018.
- ------. 2016. California Environmental Quality Act (CEQA) and Federal General Conformity Guidelines. August 2016.
 <u>http://avaqmd.ca.gov/files/e5b34d385/AV%20CEQA%20Guides%202016.pdf</u>. Accessed March 2018.
- Antelope Valley College (AVC). About Facilities Services: Facilities Master Plan. February 20, 2018. https://www.avc.edu/administration/facilities/fsmasterplan. Accessed February 2018.
- Antelope Valley Community College District (AVCCD). 2016 Facilities Master Plan. September 2016.
- California Air Resources Board (ARB). 2017 Climate Change Scoping Plan Update, Resolution 17-46. December 14, 2017. <u>https://www.arb.ca.gov/board/res/2017/res17-46.pdf</u>. Accessed March 2018.
- California Department of Conservation. February 11, 2005. Earthquake Fault Zone Map, Lancaster West Quadrangle. Available: <u>http://gmw.conservation.ca.gov/SHP/EZRIM/Maps/LANCASTER_WEST_EZRIM.pdf</u>. Accessed March 2018.
- ------. 2017. California Geological Survey Alquist-Priolo Earthquake Fault Zoning Act. Available: http://www.conservation.ca.gov/cgs/rghm/ap/Pages/main.aspx. Accessed February 2018.
- California Department of Resources Recycling and Recovery (CalRecycle). Jurisdiction Diversion/Disposal Rate Summary (2007-Current). 1995, 2018. <u>http://www.calrecycle.ca.gov/LGCentral/reports/diversionprogram/JurisdictionDiversionPost2006.aspx</u>. Accessed March2018.
- California Department of Transportation (Caltrans). 2018. California Scenic Highway Mapping System, Los Angeles County. http://www.dot.ca.gov/hq/LandArch/16 livability/scenic highways/. Accessed March 2018.
- California Energy Commission. Environmental Health and Equity Impacts from Climate Change and Mitigation Policies in California: A Review of the Literature. March 2009.
- County of Los Angeles Public Library. 2018a. Lancaster Library. http://www.colapublib.org/libs/lancaster/. Accessed March 2018.
- ------. 2018b. Quartz Hill Library. http://www.colapublib.org/libs/quartzhill/. Accessed March 2018.

Department of Homeland Security, Federal Emergency Management Agency (FEMA). Flood Insurance Rate Map (FIRM), Los Angeles County, California, and Incorporated Areas. Panel 420 of 2350 and Panel 415 of 2350. September 26, 2008. FEMA Flood Map Service Center: Search By Address.

https://msc.fema.gov/portal/search?AddressQuery=8816%20Beverly%20Boulevard%2C%20 West%20Hollywood%2C%20CA#searchresultsanchor. Accessed March 2018.

Federal Transit Administration (FTA). 2006. Transit Noise and Vibration Impact Assessment. FTA-VA-90-1003-06. United States Department of Transportation. Sacramento, CA. May 2006. <u>https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/FTA_Noise_and_Vibration_Manual_</u>.<u>pdf</u>. Accessed March 2018.

Lancaster, City of. General Plan 2030. July 14, 2009a.

- -----. Draft City of Lancaster Climate Action Plan. June 2016.
- ------. General Plan 2030 Master Environmental Assessment. April 2009b.
- ------. Draft Environmental Impact Report for the Antelope North Solar Project. November 2017.
- ------. Lancaster Municipal Code, Chapter 8.24 Noise Regulations. 2018. <u>https://library.municode.com/ca/lancaster/codes/code_of_ordinances?nodeld=TIT8HESA_</u> <u>CH8.24NORE</u>. Accessed March 2018.
- United-Heider Inspection Group. Preliminary Geotechnical Investigation Report Proposed Academic Commons Building Antelope Valley College Campus 3041 West Avenue K Lancaster, California. December, 2017.
- United States Environmental Protection Agency (U.S. EPA). Criteria Air Pollutants. <u>https://www.epa.gov/criteria-air-pollutants</u>. Accessed March 2018.
- United States Fish and Wildlife Service (USFWS). National Wetland Inventory, Wetland Mapper. 2018. <u>https://www.fws.gov/wetlands/data/mapper.html</u>. Accessed March 2018.

List of Preparers

Rincon Consultants, Inc. prepared this IS-NOP under contract to the Antelope Valley Community College District. Persons involved in data gathering analysis, project management, and quality control are listed below.

RINCON CONSULTANTS, INC.

Greg Martin, AICP, Senior Planner/Project Manager Joe Power, AICP, Principal

Notice of Preparation and Responses

NOTICE OF PREPARATION

- **TO:** Agencies, Organizations and Interested Parties
- **SUBJECT:** Notice of Preparation of a Draft Environmental Impact Report in Compliance with Title 14, Section 15082(a) of the California Code of Regulations

Pursuant to Public Resources Code Section 21165 and the Guidelines for the California Environmental Quality Act (CEQA) Section 15050, the Antelope Valley Community College District (District) is the Lead Agency responsible for preparation of an Environmental Impact Report (EIR) addressing potential impacts associated with the project identified below.

AGENCIES: The purpose of this notice is to serve as a Notice of Preparation (NOP) of an EIR pursuant to the State CEQA Guidelines Section 15082, and solicit comments and suggestions regarding the scope and content of the EIR to be prepared for the proposed project. Specifically, the District requests input on environmental information germane to your agency's statutory responsibility in connection with the proposed project. Responsible agencies may rely on the Draft EIR prepared by the City when considering permits or other approvals for this project.

ORGANIZATIONS AND INTERESTED PARTIES: The District requests your comments regarding the proposed scope and content of the environmental information to be included in the EIR.

PROJECT TITLE: Antelope Valley Community College District 2016 Facilities Master Plan

PROJECT LOCATION: Antelope Valley College, 3041 West Avenue K, Lancaster, California, 93536-5426.

PROJECT DESCRIPTION: The proposed project is an update of the Antelope Valley Community College District (District) Facilities Master Plan (FMP), also known as the 2016 FMP. The 2016 FMP is guide for the future development of the District's Lancaster campus, also known as Antelope Valley College (AVC). The 2016 FMP would accommodate an increase in full-time equivalent students (FTES) district-wide (including both the Lancaster campus and the District's Palmdale Center) of 5,175 FTES by 2030, compared to 2014 levels, for 19,852 total FTES in 2030, 15,908 of which would be at the Lancaster campus.

The 2016 FMP is a strategy for modifying the Lancaster campus to accommodate growth and change over the next 30 years. The initial FMP for the Palmdale Center is presently being developed to support proposed expansion plans of the center and will be incorporated into the District Facilities Master Plan at a later date. The 2016 FMP is based on findings from the District's Educational Master Plan. It provides a guide for long-term land and building use, and serves as a guide for near-term decisions on program planning and implementation, resource allocation, setting priorities and other College administrative matters which influence the student educational experience at AVC.

The 2016 FMP presents an overall picture of the future developed campus and includes recommendations for new construction, building renovations, change of use, and site development projects. It recommends the demolition and replacement of a number of the oldest buildings on the campus. Functions currently housed in these facilities will be relocated to new or existing facilities and will be designed to support the new campus zoning diagram and address projected instructional program needs. Although the 2016 FMP does not specify an exact amount of new square footage that would be added to the Lancaster campus upon full implementation of

the 2016 FMP, it does identify a need for additional assignable square feet (ASF) on campus. ASF is the assignable or usable space within a building. The 2016 FMP requires approval by the District's Board of Trustees.

PROBABLE ENVIRONMENTAL EFFECTS OF THE PROJECT: The Initial Study for the proposed project found that it would have potentially significant environmental impacts in the following areas, which will therefore be studied in the EIR: Aesthetics, Air Quality, Biological Resources, Cultural Resources, Greenhouse Gas Emissions, Hazards & Hazardous Materials, Noise, Transportation/Traffic, Tribal Cultural Resources, and Utilities and Service Systems.

Scoping Meeting/Community Workshop. The Antelope Valley Community College District, in its role as Lead Agency, will hold a public scoping meeting to provide an opportunity for the public and representatives of public agencies to address the scope of the Environmental Impact Report. The Scoping Meeting for the project is scheduled to occur during a regular meeting of the Antelope Valley Community College District Board of Trustees on **Monday, June 11, 2018, 6:30 pm** at the following location:

Antelope Valley Community College District – PALMDALE CENTER Room 147 & 148 2301 East Palmdale Boulevard Palmdale, CA 93550

PUBLIC REVIEW PERIOD: The Initial Study – Notice of Preparation (IS-NOP) for the proposed project is available for public review and comment pursuant to California Code of Regulations, Title 14, Section 15082(b). The public review and comment period during which the District will receive comments on the IS-NOP **begins Tuesday, May 29, 2018** and ends **Wednesday, June 27, 2018**.

THE IS-NOP IS AVAILABLE FOR PUBLIC REVIEW AT THE FOLLOWING LOCATIONS:

- Antelope Valley College, Facilities Services Building, 3041 West Ave K, Lancaster, CA, 93536-5426, Monday through Thursday between the hours of 7:30 a.m. 12:00 p.m. and 1:00 p.m. 5:30 p.m., and Friday between the hours of 8:00 a.m. 11:00 a.m.
- Online at: <u>http://www.avc.edu/news/2018/may/NOP</u>

RESPONSES AND COMMENTS: Please list a contact person for your agency or organization, include U.S. mail and email addresses, and send your comments to:

Antelope Valley Community College District Attn: Doug Jensen, Executive Director, Facilities Services 3041 West Avenue K Lancaster, CA 93536-5426

Or via email to: <u>djensen@avc.edu</u>

June 8, 2018

Doug Jensen Antelope Valley Community College 3041 West Avenue K Lancaster, CA 93536

Also sent via e-mail: djensen@avc.edu

RE: SCH# 2018051057, Antelope Valley Community College District 2016 Facilities Master Plan Project, City of Lancaster; Los Angeles County, California

Dear Mr. Jensen:

The Native American Heritage Commission has received the Notice of Preparation (NOP) for Draft Environmental Impact Report for the project referenced above. The California Environmental Quality Act (CEQA) (Pub. Resources Code § 21000 et seq.), specifically Public Resources Code section 21084.1, states that a project that may cause a substantial adverse change in the significance of an historical resource is a project that may have a significant effect on the environment. (Pub. Resources Code § 21084.1; Cal. Code Regs., tit.14, § 15064.5 (b) (CEQA Guidelines Section 15064.5 (b)). If there is substantial evidence, in light of the whole record before a lead agency, that a project may have a significant effect on the environment, an environmental impact report (EIR) shall be prepared. (Pub. Resources Code § 21080 (d); Cal. Code Regs., tit. 14, § 15064 subd. (a)(1) (CEQA Guidelines § 15064 (a)(1)). In order to determine whether a project will cause a substantial adverse change in the significance of a historical resource as usbstantial adverse change in the significance of a historical resource source source (APE).

CEQA was amended significantly in 2014. Assembly Bill 52 (Gatto, Chapter 532, Statutes of 2014) (AB 52) amended CEQA to create a <u>separate category of cultural resources</u>, "tribal cultural resources" (Pub. Resources Code § 21074) and provides that a project with an effect that may cause a substantial adverse change in the significance of a tribal cultural resource is a project that may have a significant effect on the environment (Pub. Resources Code § 21084.2). Please reference California Natural Resources Agency (2016) "Final Text for tribal cultural resources update to Appendix G: Environmental Checklist Form,"

http://resources.ca.gov/ceqa/docs/ab52/Clean-final-AB-52-App-G-text-Submitted.pdf. Public agencies shall, when feasible, avoid damaging effects to any tribal cultural resource. (Pub. Resources Code § 21084.3 (a)). AB 52 applies to any project for which a notice of preparation or a notice of negative declaration or mitigated negative declaration is filed on or after July 1, 2015. If your project involves the adoption of or amendment to a general plan or a specific plan, or the designation or proposed designation of open space, on or after March 1, 2005, it may also be subject to Senate Bill 18 (Burton, Chapter 905, Statutes of 2004) (SB 18). Both SB 18 and AB 52 have tribal consultation requirements. If your project is also subject to the federal National Environmental Policy Act (42 U.S.C. § 4321 et seq.) (NEPA), the tribal consultation requirements of Section 106 of the National Historic Preservation Act of 1966 (154 U.S.C. 300101, 36 C.F.R. § 800 et seq.) may also apply.

The NAHC recommends **lead agencies consult with all California Native American tribes** that are traditionally and culturally affiliated with the geographic area of your proposed project as early as possible in order to avoid inadvertent discoveries of Native American human remains and best protect tribal cultural resources. Below is a brief summary of <u>portions</u> of AB 52 and SB 18 as well as the NAHC's recommendations for conducting cultural resources assessments. **Consult your legal counsel about compliance with AB 52 and SB 18 as well as compliance with any other applicable laws**.

<u>AB 52</u>

AB 52 has added to CEQA the additional requirements listed below, along with many other requirements:

- Fourteen Day Period to Provide Notice of Completion of an Application/Decision to Undertake a Project: Within
 fourteen (14) days of determining that an application for a project is complete or of a decision by a public
 agency to undertake a project, a lead agency shall provide formal notification to a designated contact of, or
 tribal representative of, traditionally and culturally affiliated California Native American tribes that have
 requested notice, to be accomplished by at least one written notice that includes:
 - **a.** A brief description of the project.
 - **b.** The lead agency contact information.
 - **c.** Notification that the California Native American tribe has 30 days to request consultation. (Pub. Resources Code § 21080.3.1 (d)).
 - **d.** A "California Native American tribe" is defined as a Native American tribe located in California that is on the contact list maintained by the NAHC for the purposes of Chapter 905 of Statutes of 2004 (SB 18). (Pub. Resources Code § 21073).
- 2. Begin Consultation Within 30 Days of Receiving a Tribe's Request for Consultation and Before Releasing a <u>Negative Declaration</u>, <u>Mitigated Negative Declaration</u>, or <u>Environmental Impact Report</u>: A **lead agency** shall begin the consultation process within 30 days of receiving a request for consultation from a California Native American tribe that is traditionally and culturally affiliated with the geographic area of the proposed project. (Pub. Resources Code § 21080.3.1, subds. (d) and (e)) and prior to the release of a negative declaration, mitigated negative declaration or environmental impact report. (Pub. Resources Code § 21080.3.1(b)).
 - a. For purposes of AB 52, "consultation shall have the same meaning as provided in Gov. Code § 65352.4 (SB 18). (Pub. Resources Code § 21080.3.1 (b)).
- **3.** <u>Mandatory Topics of Consultation If Requested by a Tribe</u>: The following topics of consultation, if a tribe requests to discuss them, are mandatory topics of consultation:
 - a. Alternatives to the project.
 - **b.** Recommended mitigation measures.
 - c. Significant effects. (Pub. Resources Code § 21080.3.2 (a)).
- 4. <u>Discretionary Topics of Consultation</u>: The following topics are discretionary topics of consultation:
 - **a.** Type of environmental review necessary.
 - **b.** Significance of the tribal cultural resources.
 - c. Significance of the project's impacts on tribal cultural resources.
 - **d.** If necessary, project alternatives or appropriate measures for preservation or mitigation that the tribe may recommend to the lead agency. (Pub. Resources Code § 21080.3.2 (a)).
- 5. Confidentiality of Information Submitted by a Tribe During the Environmental Review Process: With some exceptions, any information, including but not limited to, the location, description, and use of tribal cultural resources submitted by a California Native American tribe during the environmental review process shall not be included in the environmental document or otherwise disclosed by the lead agency or any other public agency to the public, consistent with Government Code sections 6254 (r) and 6254.10. Any information submitted by a California Native American tribe during the consultation or environmental review process shall be published in a confidential appendix to the environmental document unless the tribe that provided the information consents, in writing, to the disclosure of some or all of the information to the public. (Pub. Resources Code § 21082.3 (c)(1)).
- 6. <u>Discussion of Impacts to Tribal Cultural Resources in the Environmental Document:</u> If a project may have a significant impact on a tribal cultural resource, the lead agency's environmental document shall discuss both of the following:
 - a. Whether the proposed project has a significant impact on an identified tribal cultural resource.
 - **b.** Whether feasible alternatives or mitigation measures, including those measures that may be agreed to pursuant to Public Resources Code section 21082.3, subdivision (a), avoid or substantially lessen the impact on the identified tribal cultural resource. (Pub. Resources Code § 21082.3 (b)).

- **7.** <u>Conclusion of Consultation</u>: Consultation with a tribe shall be considered concluded when either of the following occurs:
 - **a.** The parties agree to measures to mitigate or avoid a significant effect, if a significant effect exists, on a tribal cultural resource; or
 - **b.** A party, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached. (Pub. Resources Code § 21080.3.2 (b)).
- 8. <u>Recommending Mitigation Measures Agreed Upon in Consultation in the Environmental Document:</u> Any mitigation measures agreed upon in the consultation conducted pursuant to Public Resources Code section 21080.3.2 shall be recommended for inclusion in the environmental document and in an adopted mitigation monitoring and reporting program, if determined to avoid or lessen the impact pursuant to Public Resources Code section 21082.3, subdivision (b), paragraph 2, and shall be fully enforceable. (Pub. Resources Code § 21082.3 (a)).
- 9. <u>Required Consideration of Feasible Mitigation</u>: If mitigation measures recommended by the staff of the lead agency as a result of the consultation process are not included in the environmental document or if there are no agreed upon mitigation measures at the conclusion of consultation, or if consultation does not occur, and if substantial evidence demonstrates that a project will cause a significant effect to a tribal cultural resource, the lead agency shall consider feasible mitigation pursuant to Public Resources Code section 21084.3 (b). (Pub. Resources Code § 21082.3 (e)).
- **10.** Examples of Mitigation Measures That, If Feasible, May Be Considered to Avoid or Minimize Significant Adverse Impacts to Tribal Cultural Resources:
 - **a.** Avoidance and preservation of the resources in place, including, but not limited to:
 - i. Planning and construction to avoid the resources and protect the cultural and natural context.
 - ii. Planning greenspace, parks, or other open space, to incorporate the resources with culturally appropriate protection and management criteria.
 - **b.** Treating the resource with culturally appropriate dignity, taking into account the tribal cultural values and meaning of the resource, including, but not limited to, the following:
 - i. Protecting the cultural character and integrity of the resource.
 - ii. Protecting the traditional use of the resource.
 - iii. Protecting the confidentiality of the resource.
 - c. Permanent conservation easements or other interests in real property, with culturally appropriate management criteria for the purposes of preserving or utilizing the resources or places.
 - d. Protecting the resource. (Pub. Resource Code § 21084.3 (b)).
 - e. Please note that a federally recognized California Native American tribe or a nonfederally recognized California Native American tribe that is on the contact list maintained by the NAHC to protect a California prehistoric, archaeological, cultural, spiritual, or ceremonial place may acquire and hold conservation easements if the conservation easement is voluntarily conveyed. (Civ. Code § 815.3 (c)).
 - f. Please note that it is the policy of the state that Native American remains and associated grave artifacts shall be repatriated. (Pub. Resources Code § 5097.991).
- 11. <u>Prerequisites for Certifying an Environmental Impact Report or Adopting a Mitigated Negative Declaration or Negative Declaration with a Significant Impact on an Identified Tribal Cultural Resource</u>: An environmental impact report may not be certified, nor may a mitigated negative declaration or a negative declaration be adopted unless one of the following occurs:
 - a. The consultation process between the tribes and the lead agency has occurred as provided in Public Resources Code sections 21080.3.1 and 21080.3.2 and concluded pursuant to Public Resources Code section 21080.3.2.
 - **b.** The tribe that requested consultation failed to provide comments to the lead agency or otherwise failed to engage in the consultation process.
 - **c.** The lead agency provided notice of the project to the tribe in compliance with Public Resources Code section 21080.3.1 (d) and the tribe failed to request consultation within 30 days. (Pub. Resources Code § 21082.3 (d)).

This process should be documented in the Cultural Resources section of your environmental document.

The NAHC's PowerPoint presentation titled, "Tribal Consultation Under AB 52: Requirements and Best Practices" may be found online at: http://nahc.ca.gov/wp-content/uploads/2015/10/AB52TribalConsultation_CalEPAPDF.pdf

<u>SB 18</u>

SB 18 applies to local governments and requires **local governments** to contact, provide notice to, refer plans to, and consult with tribes prior to the adoption or amendment of a general plan or a specific plan, or the designation of open space. (Gov. Code § 65352.3). Local governments should consult the Governor's Office of Planning and Research's "Tribal Consultation Guidelines," which can be found online at: https://www.opr.ca.gov/docs/09_14_05_Updated_Guidelines_922.pdf

Some of SB 18's provisions include:

- <u>Tribal Consultation</u>: If a local government considers a proposal to adopt or amend a general plan or a specific plan, or to designate open space it is required to contact the appropriate tribes identified by the NAHC by requesting a "Tribal Consultation List." If a tribe, once contacted, requests consultation the local government must consult with the tribe on the plan proposal. A tribe has 90 days from the date of receipt of notification to request consultation unless a shorter timeframe has been agreed to by the tribe. (Gov. Code § 65352.3 (a)(2)).
- 2. <u>No Statutory Time Limit on SB 18 Tribal Consultation</u>. There is no statutory time limit on SB 18 tribal consultation.
- 3. <u>Confidentiality</u>: Consistent with the guidelines developed and adopted by the Office of Planning and Research pursuant to Gov. Code section 65040.2, the city or county shall protect the confidentiality of the information concerning the specific identity, location, character, and use of places, features and objects described in Public Resources Code sections 5097.9 and 5097.993 that are within the city's or county's jurisdiction. (Gov. Code § 65352.3 (b)).
- 4. <u>Conclusion of SB 18 Tribal Consultation</u>: Consultation should be concluded at the point in which:
 - **a.** The parties to the consultation come to a mutual agreement concerning the appropriate measures for preservation or mitigation; or
 - b. Either the local government or the tribe, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached concerning the appropriate measures of preservation or mitigation. (Tribal Consultation Guidelines, Governor's Office of Planning and Research (2005) at p. 18).

Agencies should be aware that neither AB 52 nor SB 18 precludes agencies from initiating tribal consultation with tribes that are traditionally and culturally affiliated with their jurisdictions before the timeframes provided in AB 52 and SB 18. For that reason, we urge you to continue to request Native American Tribal Contact Lists and "Sacred Lands File" searches from the NAHC. The request forms can be found online at: http://nahc.ca.gov/resources/forms/

NAHC Recommendations for Cultural Resources Assessments

To adequately assess the existence and significance of tribal cultural resources and plan for avoidance, preservation in place, or barring both, mitigation of project-related impacts to tribal cultural resources, the NAHC recommends the following actions:

- Contact the appropriate regional California Historical Research Information System (CHRIS) Center (http://ohp.parks.ca.gov/?page_id=1068) for an archaeological records search. The records search will determine:
 - **a.** If part or all of the APE has been previously surveyed for cultural resources.
 - **b.** If any known cultural resources have been already been recorded on or adjacent to the APE.
 - c. If the probability is low, moderate, or high that cultural resources are located in the APE.
 - d. If a survey is required to determine whether previously unrecorded cultural resources are present.
- **2.** If an archaeological inventory survey is required, the final stage is the preparation of a professional report detailing the findings and recommendations of the records search and field survey.
 - **a.** The final report containing site forms, site significance, and mitigation measures should be submitted immediately to the planning department. All information regarding site locations, Native American human remains, and associated funerary objects should be in a separate confidential addendum and not be made available for public disclosure.

- **b.** The final written report should be submitted within 3 months after work has been completed to the appropriate regional CHRIS center.
- 3. Contact the NAHC for:
 - **a.** A Sacred Lands File search. Remember that tribes do not always record their sacred sites in the Sacred Lands File, nor are they required to do so. A Sacred Lands File search is not a substitute for consultation with tribes that are traditionally and culturally affiliated with the geographic area of the project's APE.
 - **b.** A Native American Tribal Consultation List of appropriate tribes for consultation concerning the project site and to assist in planning for avoidance, preservation in place, or, failing both, mitigation measures.
- 4. Remember that the lack of surface evidence of archaeological resources (including tribal cultural resources) does not preclude their subsurface existence.
 - a. Lead agencies should include in their mitigation and monitoring reporting program plan provisions for the identification and evaluation of inadvertently discovered archaeological resources per Cal. Code Regs., tit. 14, section 15064.5(f) (CEQA Guidelines section 15064.5(f)). In areas of identified archaeological sensitivity, a certified archaeologist and a culturally affiliated Native American with knowledge of cultural resources should monitor all ground-disturbing activities.
 - **b.** Lead agencies should include in their mitigation and monitoring reporting program plans provisions for the disposition of recovered cultural items that are not burial associated in consultation with culturally affiliated Native Americans.
 - c. Lead agencies should include in their mitigation and monitoring reporting program plans provisions for the treatment and disposition of inadvertently discovered Native American human remains. Health and Safety Code section 7050.5, Public Resources Code section 5097.98, and Cal. Code Regs., tit. 14, section 15064.5, subdivisions (d) and (e) (CEQA Guidelines section 15064.5, subds. (d) and (e)) address the processes to be followed in the event of an inadvertent discovery of any Native American human remains and associated grave goods in a location other than a dedicated cemetery.

Please contact me if you need any additional information at gayle.totton@nahc.ca.gov.

Sincerely,

Totton, M.A., PhD.

Associate Governmental Program Analyst (916) 373-3714

cc: State Clearinghouse

661.723.8070

In reply, please refer to AV0618/066

June 11, 2018

unjagt, s

Antelope Valley Community College District ATTN: Doug Jensen, Executive Director, Facilities Services 3041 West Avenue K Lancaster, CA 93536

RE: Initial Study-Notice of Preparation (IS-NOP)

Mr. Jensen,

The Antelope Valley Air Quality Management District (District) has received the request for comment on IS-NOP for the proposed project to update the Antelope Valley Community College District Facilities Master Plan.

The District requires that all demolition/renovation activities must comply with the requirements outlined in District Rule 1403, *Asbestos Emissions From Demolition/Renovation Activities*. The District's California Environmental Quality Act (CEQA) significance thresholds can be found in the "AVAQMD CEQA and Federal Conformity Guidelines" located on the District web site www.avaqmd.ca.gov.

The District requires applicable permit application(s) and fees be submitted for any equipment or process that may not be exempt under District Rule 219 and have the potential to emit or control air contaminants as a condition of approval.

All construction equipment utilized on this project must comply with Air Resources Board In-Use Off-Road Diesel Vehicle Regulation.

Thank you for the opportunity to review this planning document. If you have any questions regarding the information presented in this letter please contact me at (661) 723-8070 ext. 2 or bbanks@avaqmd.ca.gov.

Sincerely,

Bret Banks Executive Director/APCO

BSB/bjl Sent via Email

DEPARTMENT OF TRANSPORTATION

DISTRICT 7 – Office of Regional Planning 100 S. MAIN STREET, MS 16 LOS ANGELES, CA 90012 PHONE (213) 897-0673 FAX (213) 897-1337 TTY 711 www.dot.ca.gov

Serious Drought. Making Conservation a California Way of Life.

June 27, 2018

Mr. Doug Jensen Antelope Valley Community College District 3041 West Avenue K Lancaster, CA 93536

> RE: Antelope Valley Community College District 2016 Facilities Master Plan Notice of Preparation of Environmental Impact Report (NOP) SCH # 2018051057 GTS # 07-LA-2018-01477-FL Vic. LA/14/PM R 66.99

Dear Mr. Jensen:

Thank you for including the California Department of Transportation (Caltrans) in the environmental review process for the above referenced project. The plan proposes an update to the Antelope Valley Community College District (District) Facilities Master Plan (FMP), also known as the 2016 FMP. It is a guide for the future development of the District's Lancaster campus to accommodate growth and change over the next 30 years.

The District consists of Antelope Valley College's (AVC) Lancaster campus and the AVC Palmdale center. According to the 2016 FMP, the District supported 14,677 full-time equivalent students (FTES) in 2014 in both campuses, and it anticipated to accommodate 19,852 FTES by 2030, a total increase of 5,175 FTES (35.3%).

The mission of Caltrans is to provide a safe, sustainable, integrated and efficient transportation system to enhance California's economy and livability. Senate Bill 743 (2013) mandated that CEQA review of transportation impacts of proposed development be modified by using Vehicle Miles Traveled (VMT) as the primary metric in identifying transportation impacts for all future development projects. Please reference to The Governor's Office of Planning and Research (OPR) for more information: http://opr.ca.gov/ceqa/updates/guidelines/.

Caltrans supports the implementation of complete street and pedestrian safety measures such as road diet and other traffic calming measures. Please note that the Federal Highway Administration (FHWA) recognizes the road diet treatment as a proven safety countermeasure, and the cost of the road diet can be significantly reduced if implemented in tandem with routine street resurfacing. Mr. Doug Jensen June 27, 2018 Page 2 of 2

Good geometric and traffic engineering design to accommodate bicyclists and pedestrians are critical at every on and off ramp and freeway terminus intersection with local streets. Caltrans will work with the Lead Agency to look for every opportunity to develop projects that improve safety and connectivity for pedestrians and bicyclists. Opportunities for improvements may exist on State facilities such as: freeway termini, on/off-ramp intersections, overcrossings, under crossings, tunnels, bridges, on both conventional state highways and freeways.

Caltrans encourages the lead agency to actively promote alternatives to car use and consider vehicle demand-reducing strategies including incentives for commuters to use transit, park-and-ride lots, discounts on months bus and rail passes, shuttle buses, vanpools, etc. to the extent that more of the population shifts to transit for some of their inter-regional trips, future cumulative traffic impacts to freeways may be satisfactorily mitigated.

With regard to public transit, we recommend planning for gradual continual improvement of transit stops, bus bays, or other facilities, to accommodate traffic flow, especially on streets that are State Route locations or are near freeway intersections.

Caltrans also seeks to provide equitable mobility options for people who are economically, socially, or physically disadvantaged. Therefore, we ask the Lead Agency to evaluate future development for access problems, VMT and service needs that may need to be addressed.

Analysis should include existing traffic, traffic generated by the project assigning to the State facilities, cumulative traffic generated from all specific planning developments in the area, and traffic growth other than from the project and developments.

A discussion of mitigation measures appropriate to alleviate anticipated traffic impacts. Any mitigation involving transit or Transportation Demand Management (TDM) is encouraged and should be justified to reduce VMT and greenhouse gas emissions. Such measures are critical to facilitating efficient site access.

For additional TDM options, please refer to the Federal Highway Administration's *Integrating Demand Management into the Transportation Planning Process: A Desk Reference* (Chapter 8). The reference is available online: <u>http://www.ops.fhwa.dot.gov/publications/fhwahop12035/fhwahop12035.pdf</u>.

If you have any questions, please contact me, the project coordinator at (213) 897-0673 and refer to GTS #07-LA-2018-01477-FL.

Sincerely.

IGR/CEQA Acting Branch Chief cc: Scott Morgan, State Clearinghouse

Transportation Impact Study

Antelope Valley Community College District 2016 Facilities Master Plan

Draft Transportation Impact Study

Prepared for: Rincon Consultants, Inc.

July 2018

LA18-3015

Fehr / Peers

Table of Contents

1. INTRODUCTION	3
Project Description	3
Study Scope	7
Organization of Report	9
2. Existing Conditions	
Study Area	
Existing Street System	
Existing Public Transit Service	
Existing Bicycle and Pedestrian Facilities	
Existing Traffic Volumes and Level of Service	
3. TRAFFIC PROJECTIONS	17
Project Traffic	17
Existing With Project Traffic Conditions	21
Future Traffic Scenarios	21
4. INTERSECTION TRAFFIC IMPACT ANALYSIS	27
Criteria for Determination of Significant Traffic Impact	
Existing With Project Impact Analysis	
Future With Project Impact Analysis	
Transit System Project Impacts	
Bicycle Network Project Impacts	
Pedestrian Network Project Impacts	
5. Parking and Site Circulation Analysis	
Parking Guidelines	
Site Access and Circulation	
6. REGIONAL TRANSPORTATION SYSTEM ANALYSIS	
Congestion Management Program	
7. SUMMARY AND CONCLUSIONS	45

Appendices

Appendix A: Lane Configurations and Traffic Volumes	47
Appendix B: Turning Movement Count Sheets	48
Appendix C: Project LOS Analysis Sheets	49

List of Figures

Figure 1:	Project Location and Study Intersections	5
Figure 2:	Site Plan	6
Figure 3:	Project Trip Distribution	. 20
Figure 4:	Capital Improvements Projects Included in the City of Lancaster Demand Model	. 24
Figure 5:	Site Access and Vehicular Circulation	. 39
Figure 6:	Site Access and Pedestrian Circulation	.41

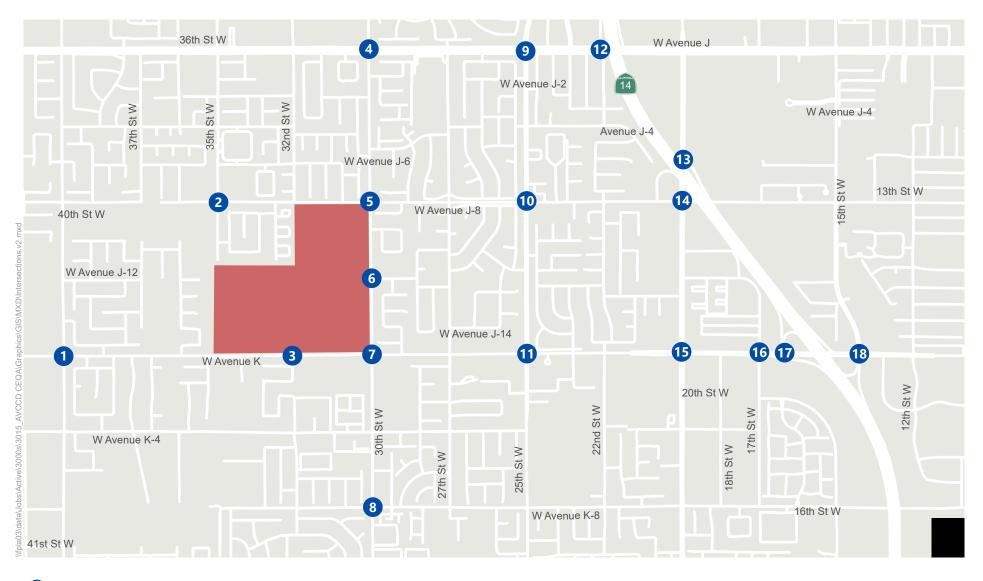
List of Tables

Table 1:	Level of Service Definitions for Signalized Intersections ICU Methodology	13
Table 2:	Level of Service Definitions for Unsignalized Intersections HCM Methodology	14
Table 3:	Existing Conditions Intersection Level of Service	15
Table 4:	Trip Generation	18
Table 5:	Existing with Project Intersection Level of Service and Impact Analysis	29
Table 6:	Future with Project Intersection Level of Service and Impact Analysis	32
Table 7:	Parking Need and Supply	38

1. INTRODUCTION

This report documents the assumptions, methodologies, and findings of a transportation impact study conducted by Fehr & Peers to evaluate the potential traffic impacts of an update of the Antelope Valley Community College District (AVCCD, or District) Facilities Master Plan (FMP) in the City of Lancaster, California. The project is located at the Lancaster campus of Antelope Valley College, in the western portion of the City, between West Avenue J-8 to the north, West Avenue K to the south, 35th Street West to the west, and 30th Street West to the east.

Project Description


The proposed project is an update of the Antelope Valley Community College District (AVCCD, or District) Facilities Master Plan (FMP), also known as the 2016 FMP. The 2016 FMP is a guide for the future development of the Lancaster campus of AVCCD, also known as Antelope Valley College (AVC), and hereinafter also referred to as the Project site.

The 2016 FMP presents an overall picture of the future developed campus, based on estimated future enrollment, and includes recommendations for new construction, building renovations, change of use, and site development projects. In the year 2030, the FMP estimates student enrollment of 15,908 students. To accommodate this growth in enrollment, it recommends the demolition and replacement of a number of the oldest buildings on the campus. Functions currently housed in these facilities will be relocated to new or existing facilities and will be designed to support the new campus zoning diagram and address projected instructional program needs. Although the 2016 FMP does not specify an exact amount of new square footage that would be added to the AVC campus upon full implementation of the FMP, it does identify a need for additional assignable square feet (ASF) on campus (see page 22 of the FMP). ASF is the assignable or usable space within a building (AVCCD, 2016).

The project site is located in the western portion of the City of Lancaster and is characterized by a central core of academic buildings set among areas landscaped with lawns and other ornamental vegetation, but with fewer lawn areas north of a line extending west from West Avenue J-12. This campus core is surrounded by perimeter parking lots fronting on the major streets that border the campus (except at the corner of West Avenue K and 30th Street West, which is occupied by the Administration Building and an area landscaped with lawn and trees), and athletic fields on the western edge of campus. Buildings on the project site are generally one to three stories in height, with some taller structures such as the Performing Arts Theater and athletic field lighting.

In addition to renovating many of the existing buildings on campus, the Project also includes adding a new main driveway to the campus at the intersection of 30th Street & Avenue J-12. The new driveway would include adding eastbound access from the campus and signalizing the intersection. It would also entail closing two existing driveways immediately south of that intersection.

Figure 1 illustrates the location of the Project, 18 study intersections, and the surrounding street system. Figure 2 shows the site plan of the Project.

StudyIntersections ProjectSite

Figure 1 Study Intersections

FACILITIES MASTER PLAN

EXISTING FACILITIES PROPOSED NEW FACILITIES RENOVATION/CHANGE OF USE

Source: AVCCD, 2016

Þ

Figure 2 Site Plan

Study Scope

The scope of work for this study was determined in consultation with the City of Lancaster's Traffic Engineering staff.

Traffic Scenarios

The study assumes that the Project would be completed by year 2030 and is directed at analyzing the potential project-generated traffic impacts on the local street system under both existing and future year traffic conditions. The following traffic scenarios have been developed and analyzed as part of this study:

- <u>Existing Conditions</u> The analysis of existing traffic conditions is intended to provide a basis for the remainder of the study. The existing conditions analysis includes a description of the transportation system serving the Project site, existing traffic volumes, and an assessment of the operating conditions at the study analysis locations described below. This scenario is described in detail in Chapter 2.
- <u>Existing with Project Conditions</u> This traffic scenario provides projected traffic volumes and an assessment of operating conditions under existing conditions with the addition of project-generated traffic. The impacts of the proposed Project on existing traffic operating conditions were then identified. This scenario is described in detail in Chapter 4.
- <u>Future without Project Conditions</u> Future traffic projections without the proposed Project were developed for the year 2030. The objective of this analysis was to project future traffic growth and operating conditions that could be expected to result from regional growth, cumulative projects, and transportation network changes in the vicinity of the Project site by the year 2030. This scenario is described in detail in Chapter 3.
- <u>Future with Project Conditions</u> This traffic scenario provides projected traffic volumes and an assessment of operating conditions under future conditions with the addition of Project-generated traffic. The impacts of the proposed Project on future traffic operating conditions were then identified. This scenario is described in detail in Chapter 4.

Study Intersections

A total of 18 intersections were selected for the analysis of the Project in consultation with the City of Lancaster. Sixteen of the 18 intersections are signalized (Figure 1). The following intersections were identified in conjunction with the City of Lancaster to be analyzed as part of the scope of work for this Project:

- 1. 40th Street & Avenue K (signalized)
- 2. 35th Street & Avenue J-8 (all-way stop-controlled)
- 3. 32nd Street/Campus Driveway & Avenue K (signalized)
- 4. 30th Street & Avenue J (signalized)
- 5. 30th Street & Avenue J-8 (signalized)
- 30th Street & Avenue J-12/New Driveway (one-way stop-controlled, to be signalized with the Project)
- 7. 30th Street & Avenue K (signalized)
- 8. 30th Street & Avenue K-8 (signalized)
- 9. 25th Street & Avenue J (signalized)
- 10. 25th Street & Avenue J-8 (signalized)
- 11. 25th Street & Avenue K
- 12. SR-14 Southbound Off Ramp & Avenue J (signalized)
- 13. 20th Street & SR-14 Northbound Off Ramp (signalized)
- 14. 20th Street & Avenue J-8 (signalized)
- 15. 20th Street & Avenue K (signalized)
- 16. 17th Street & Avenue K (signalized)
- 17. SR-14 Southbound Ramps & Avenue K (signalized)
- 18. 15th Street/SR-14 Northbound Ramps & Avenue K (signalized)

Regional Transportation Impact Analysis

Regional access to the Project site is provided by the State Route 14 (SR 14) located approximately 1.3 miles east of the Project site and State Route 138 (SR 138) located approximately 7 miles north of the Project site.

Chapter 6 discusses the regional transportation impact analysis conducted according to the 2010 Congestion Management Program (CMP) (Metro, 2010), including a discussion of CMP arterial monitoring stations, freeway impact analysis, and regional transit impact analysis.

Organization of Report

This report is divided into six chapters, including this introduction. Chapter 2 describes the existing conditions, including an inventory of the streets, highways, and transit service in the study area, a summary of existing traffic volumes, and an assessment of existing operating conditions. The methodologies used to develop traffic forecasts for the Existing, Existing with Project, Future without Project, and Future with Project scenarios and the forecasts themselves are included in Chapter 3. Chapter 4 presents an assessment of potential intersection traffic impacts of the proposed Project under both existing and future conditions. Chapter 5 discusses internal circulation and parking at the site. Chapter 6 provides a regional transportation impact analysis. Chapter 7 provides the summary and conclusions.

2. EXISTING CONDITIONS

A comprehensive data collection effort was undertaken to develop a detailed description of existing conditions in the study area. The assessment of conditions relevant to this study includes a description of the study area, an inventory of the local street system in the vicinity of the Project site, a review of traffic volumes on these facilities, an assessment of the resulting operating conditions, and the current transit service in the study area. A detailed description of these elements is presented in this chapter.

Study Area

The Project site is within the City of Lancaster. The study area selected for analysis extends to include 40th Street to the west, 15th Street to the east, West Avenue J to the north, and W Avenue K-8 to the south. The streets and intersections in the study area are under the jurisdiction of the City of Lancaster.

Existing Street System

As illustrated in Figure 1, the Project site is located at the northwest corner of 30th Street West, and West Avenue K. Aerospace Highway (State Route 14) provides regional access to the Project site.

Major arterials serving the study area include 20th Street West and 30th Street West in the north/south direction, and West Avenue J in the east/west direction.

The characteristics of the freeways and major roadways serving the study area are described below.

Freeways

• **State Route 14** runs in the north/south direction, east of the Project site, through Lancaster. In the vicinity of the study area, the freeway provides three lanes in each direction. Ramps are provided at West Avenue J, West Avenue J-8, and West Avenue K.

North/South Streets

40th Street West runs in the north/south direction, west of the Project site. 40th Street West has two travel lanes in the northbound direction and one travel lane in the southbound direction. Parking is not permitted on either side of the street within the study area. The posted speed limit is 50 miles per hour (mph).

- **35th Street West** runs in the north/south direction adjacent to the Project site. 35th Street West has one travel lane in each direction with left-turn pockets present at major intersections south of West Avenue J-6 and one bicycle lane in each direction north of West Avenue J-6. Parking is not permitted on either side of the street within the study area. The posted speed limit is 40 mph.
- **30**th **Street West** runs in the north/south direction adjacent to the Project site. 30th Street West has two travel lanes and one bicycle lane in each direction and a center turn lane south of West Avenue J-12 within the study area. Street parking is available on the east side of the street, south of West Avenue K-4 and north of West Avenue J-4, as well as on the west side of the street south of West Avenue K. The posted speed limit is 50 mph.
- **25th Street West** runs in the north/south direction, east of the Project site. 25th street West has two travel lanes and one bicycle lane in each direction, with a center turn lane, within the study area. Parking is not permitted on either side of the street. The posted speed limit is 45 mph.
- **20**th **Street West** runs in the north/south direction, east of the Project site. 20th Street West has two travel lanes and one bicycle lane in each direction, with a center turn lane south of West Avenue J-12, within the study area. There is a raised median north of West Avenue J-12. 20th Street West has three travel lanes in each direction north of West Avenue J-8. Parking is not permitted on either side of the street. The posted speed limit is 45 mph.
- **15th Street West** runs in the north/south direction, east of the Project site. 15th Street West has two travel lanes in each direction with a raised median on portions of the roadway. Street parking is not permitted on either side of the street. The posted speed limit is 40 mph.

East/West Streets

- West Avenue J runs in the east/west direction, north of the Project site. West Avenue J has three travel lanes in each direction with left-turn pockets at major intersections and a raised median within the study area. Parking is not permitted in either direction. The posted speed limit is 50 mph west of 25th Street West and 45 mph east of 25th Street West.
- West Avenue J-8 runs in the east/west direction adjacent to the Project site. West Avenue J-8 has two travel lanes and one bicycle lane in each direction, with a center turn lane within the study area. Parking is not permitted in either direction within the study area. The posted speed limit is 45 mph.
- West Avenue K runs in the east/west direction adjacent to the Project site. West Avenue K has two travel lanes in each direction with a center turn-lane and a raised median on portions of the roadway west of 32nd Street West and east of 22nd Street West. West Avenue K provides three travel lanes west of 27th Street West and east of 22nd Street West. Parking is not permitted in both direction within the Study Area. The posted speed limit is 50 mph.

• West Avenue K-8 runs in the east/west direction south of Project site. West Avenue K-8 has two travels lanes and one bicycle lane in each direction, with a center turn lane within the study area. Parking is not permitted in either direction within the study area. The posted speed limit is 45 mph.

Existing Public Transit Service

The Project site is served by six local and regional bus lines. The Project is directly served by Antelope Valley Transit Authority Route 7 (north-south service from Palmdale Transportation center to Lancaster City Hall), Route 9 (east-west service between Quartz Hill and Lancaster City Park via Avenue H), Route 11 (east-west service via Avenue I), Route 12 (east-west service along Avenue J), and Kern Transit Route 100 (east-west service between Bakersfield and Lancaster) and Route 250 (north-south service connecting Mojave to Ridgecrest) within the vicinity of the project.

Existing Bicycle and Pedestrian Facilities

The study area has a limited existing bikeway network that includes Class II bicycle lanes. Bicycle lanes are present on the following north-south streets in the study area:

- 40th Street West
- 35th Street West
- 30th Street West

West Avenue J-8 is the only east/west street in the study area with a bicycle facility. The study area is served by relatively robust pedestrian facilities, including 8-10-foot wide sidewalks. There is currently no sidewalk present along West Avenue K-8 within the study area.

Existing Traffic Volumes and Level of Service

This section presents existing peak hour traffic volumes, describes the methodology used to assess the traffic conditions at each intersection, and analyzes the resulting operating conditions at each, indicating volume-to-capacity (V/C) ratios and levels of service (LOS).

Existing Traffic Volumes

Weekday AM and PM peak hour turning movement counts were collected at the study intersections in April 2018. The existing weekday morning and afternoon peak hour volumes at the study intersections are provided in Appendix A. Traffic count worksheets for these intersections are contained in Appendix B.

Level of Service (LOS) Methodology

The City of Lancaster utilizes the Intersection Capacity Utilization (ICU) methodology to determine LOS at signalized intersections. The ICU method estimates the V/C ratio for an intersection based on the individual V/C ratios for the conflicting traffic movements. The ICU value represents the percent signal green time of capacity of the intersection movements. It should be noted that the ICU methodology assumes uniform traffic distribution per intersection approach lane and optimal signal timing. The overall intersection V/C ratio is subsequently assigned an LOS value to describe intersection operations in Table 1. LOS ranges from LOS A (free flow) to LOS F (jammed condition).

Table 1: Level of Service Definitions for Signalized Intersections ICU Methodology			
Level of Service	Volume/Capacity Ratio	Definition	
А	0.000 - 0.600	EXCELLENT. No vehicle waits longer than one red light and no approach phase is fully used.	
В	>0.600 - 0.700	VERY GOOD. An occasional approach phase is fully utilized; many drivers begin to feel somewhat what restricted within groups of vehicles.	
С	>0.700 - 0.800	GOOD. Occasionally drivers may have to wait through more than one red light; backups may develop behind turning vehicles.	
D	>0.800 - 0.900	FAIR. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups.	
E	>0.900 - 1.000	POOR. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles.	
F	> 1.000	FAILURE. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Tremendous delays with continuously increasing queue lengths	

Source:

Transportation Research Circular No. 212, Interim Materials on Highway Capacity, Transportation Research Board, 1980.

Unsignalized intersections in the City of Lancaster are analyzed using the Highway Capacity Manual (HCM) methodology to determine traffic operations. The 2010 HCM analysis methodology describes the

operations of an intersection using a range of LOS from LOS A (free-flow conditions) to LOS F (severely congested conditions), based on a range of stopped delay in seconds experienced per vehicle, shown in Table 2.

	Table 2: Level of Service Definitions for Unsignalized Intersections HCM Methodology									
Level of Service	Average Control Delay (Seconds/Vehicle)	Definition								
A	<u><</u> 10.0	EXCELLENT. No vehicle waits longer than one red light and no approach phase is fully used.								
В	> 20.0 and <u><</u> 15.0	VERY GOOD. An occasional approach phase is fully utilized; many drivers begin to feel somewhat what restricted within groups of vehicles.								
С	> 15.0 and <u><</u> 25.0	GOOD. Occasionally drivers may have to wait through more than one red light; backups may develop behind turning vehicles.								
D	> 25.0 and <u><</u> 35.0	FAIR. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups.								
E	> 35.0 and <u><</u> 50.0	POOR. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles.								
F	> 50.0	FAILURE. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Tremendous delays with continuously increasing queue lengths								

Source:

Highway Capacity Manual, Transportation Research Board, 2010.

Existing 2018 Levels of Service

Existing year traffic volumes presented in Appendix A were analyzed using the methodologies described above to determine the existing operating conditions at the study intersections. Table 3 summarizes the results of the analysis of the existing weekday morning and evening peak hour V/C ratio and corresponding LOS at each of the analyzed intersections. Existing LOS were analyzed with the current lane configurations observed in the field. Of the 18 study intersections, including two unsignalized intersections, all operate at LOS D or better during both peak periods. Detailed LOS analysis sheets for the Project are provided in Appendix C.

		Table 3 Existing Conditions Interse		;		
ID	N/S Street Name	NTRACT NAME F/W NTRACT NAME INTERSECTION (ONTROL		Analyzed Period	Existing (V/C or Delay	(2018) LOS
-			C's sell sel	AM	0.572	А
1	40th Street West	West Avenue K	/est Avenue K Signalized		0.558	Α
2	35th Street West	West Avenue J-8	All-Way	AM	28.2	D
2	35th Street West	west Avenue J-8	Stop-Controlled	PM	13.2	В
2	32nd Street	West August K	Cincelized	AM	0.501	А
3	West/Driveway	West Avenue K	Signalized	PM	0.376	А
4	20th Churcht W/s at	West August 1	Cincelized	AM	0.671	В
4	30th Street West	reet West West Avenue J Signalized		PM	0.472	А
_				AM	0.635	В
5	30th Street West	West Avenue J-8	Signalized	PM	0.514	Α
6			AM	20.9	С	
6	30th Street West	Driveway Stop-Controlled		PM	13.8	В
_			AM	0.638	В	
7	30th Street West	West Avenue K	Signalized	PM	0.490	А
0			C'a sal' sal	AM	0.568	А
8	30th Street West	West Avenue K-8	Signalized	PM	0.447	Α
0				AM	0.466	А
9	25th Street West	West Avenue J	Signalized	PM	0.500	А
10				AM	0.576	А
10	25th Street West	West Avenue J-8	Signalized	PM	0.528	А
				AM	0.551	А
11	25th Street West	West Avenue K	Signalized	PM	0.472	А
10	SR-14 Southbound			AM	0.430	А
12	Off-Ramp	West Avenue J	Signalized	PM	0.483	А
10				AM	0.559	А
13	20th Street West	SR-14 Northbound Off Ramp	Signalized	PM	0.586	А
			c	AM	0.481	А
14	20th Street West	West Avenue J-8	Signalized	PM	0.649	В
4 -		Wast August - K	C'a sal' d	AM	0.495	А
15	20th Street West	West Avenue K	Signalized	PM	0.541	А
10		West Augure K	Cine d'a d	AM	0.517	А
16	17th Street West	West Avenue K	Signalized	PM	0.558	А
						-

	Table 3: Existing Conditions Intersection Level of Service											
				Analyzed	Existing (2018)							
ID	N/S Street Name	E/W Street Name	Intersection Control	Period	V/C or Delay	LOS						
17	SR-14 Southbound	West Avenue K	Signalized	AM	0.488	А						
17	Ramps	West Avenue K	Signalized	PM	0.593	Α						
18	15th Street/SR-14	West Avenue K	Signalized	AM	0.673	В						
10	Northbound Ramps	West Avenue K	Signalized	PM	0.837	D						

3. TRAFFIC PROJECTIONS

Project Traffic

The development of trip generation estimates for the proposed Project involves the use of a 3-step process: trip generation, trip distribution, and traffic assignment.

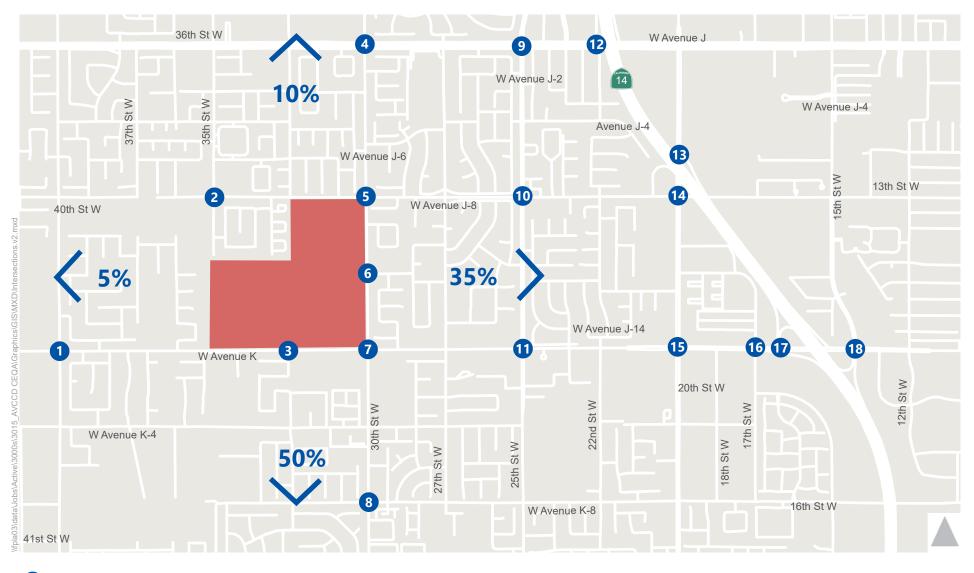
Project Trip Generation

As indicated in Chapter 1, the proposed Project would include an increase in student enrollment to 15,908 students by 2030.

As shown in Table 4, trip generation rates from Trip Generation, 10th Edition (Institute of Transportation Engineers [ITE], 2017) were used to estimate the number of trips associated with the Project, based on student enrollment. Current student enrollment numbers were obtained in February 2018, when the Spring 2018 headcount recorded 12,946 students. Net new Project trips were estimated from the difference between existing and future student enrollment. A 5% trip credit was applied to account for trips made by transit. As shown in Table 4, the Project would generate an estimated net increase of 3,236 daily trips, including 310 trips (252 inbound/58 outbound) during the AM peak hour and 310 trips (174 inbound/136 outbound) during the PM peak hour.

P

								able 4: ienerat	ion							
Trip Generation Rates [2] Trip Generation Estima										timates						
Land Use	Siz	e [1]	Dalla	AM	l Peak H	lour	PN	l Peak H	our	Deile	AN	AM Peak Hour		РМ	PM Peak Hour	
			Daily	Rate	% In	% Out	Rate	% In	% Out	Daily	Total	In	Out	Total	In	Out
Future 2030 E	nrollmen	t														
Community College	15,908	students	1.15	0.11	81%	19%	0.11	56%	44%	18,294	1,750	1,418	332	1,750	980	770
	Less Tr	ransit Credit	5%	5%			5%			(915)	(88)	(71)	(17)	(88)	(49)	(39)
		Subtotal								17,379	1,663	1,347	315	1,663	931	732
Existing 2018	Enrollme	nt														
Community College	12,946	students	1.15	0.11	81%	19%	0.11	56%	44%	(14,888)	(1,424)	(1,153)	(271)	(1,424)	(797)	(627)
	Less Ti	ransit Credit	5%	5%			5%			744	71	58	14	71	40	31
		Subtotal								(14,144)	(1,353)	(1,095)	(257)	(1,353)	(757)	(596)
Net New Proj	ect Trips									3,236	310	252	58	310	174	136


Notes:

[1] Future 2030 enrollment from 2016 Facilities Master Plan, Antelope Valley Community College District, 2016. Existing 2018 enrollment represents headcount from Spring 2018 Census, 19 February 2018.

[2] Rates from Institute of Transportation Engineers (ITE) Trip Generation, 10th Edition, 2017: Junior/Community College - ITE #540.

Project Traffic Distribution

The geographic distribution of traffic generated by the proposed Project depends on several factors. These include the type and density of the proposed land use, the locations of population centers from which students and employees of the campus would be drawn, characteristics of the street system serving the site, and the level of accessibility of the routes to and from the Project site. The zip codes of currently enrolled students were used to develop a trip distribution pattern and a corresponding percentage of traffic likely to be regionally oriented and using the freeway as opposed to the local street system. Figure 3 illustrates the Project's trip distribution pattern.

Study Intersections
Project Site

Figure 3 Project Trip Distribution

Project Traffic Assignment

Project traffic assignment involved a three-step process: because the Project involves the addition and signalization of a new driveway at 30th Street West & West Avenue J-12 and the removal of two existing driveways just south of the new signalized entry, existing trips to and from the campus were first unassigned to the network. This accounts for the fact that the new signalized driveway and the closed driveways will change the travel behavior of existing trips in addition to Project-related trips.

In the first step, the estimate of existing campus trip generation (shown in Table 4) was used. It was assumed that the new driveway will change the behavior of the existing driveways on 30th Street West, while driveways on West Avenue J-8 and West Avenue K would be unaffected by the new access point. Based on field observations of existing parking supply and utilization on campus on a typical weekday, the four other existing driveways on 30th Street West were estimated to accommodate 45% of all existing trips to and from the campus. These trips were removed from the network.

In the second step, these existing trips were re-assigned to the network, including at the new driveway. This step represents the shift in traffic from existing driveways to the new access point. In the third and final step, traffic expected to be generated by the proposed Project was assigned to the street network using the distribution patterns described in Figure 3. Appendix A shows the assignment of Project-only traffic volumes for the morning and afternoon peak hours at the 18 analyzed intersection locations.

Existing With Project Traffic Conditions

The traffic generated by the Project was estimated and assigned to the study intersections in addition to the existing traffic volumes to estimate Existing with Project traffic volumes. Turning movement traffic volumes for the Existing with Project scenario are provided in Appendix A. Analysis sheets are provided in Appendix C.

Future Traffic Scenarios

Future Year 2030 Traffic Conditions

To evaluate the potential impacts of the proposed Project on future conditions, it was necessary to develop estimates of future traffic conditions in the area both without and with Project traffic. The City of Lancaster Subarea Model was used to forecast turning movement volumes at study intersections for the year 2030.

The North Los Angeles County subarea model was used to develop the City of Lancaster model. The North Los Angeles County model includes portions of the SCAG 2012 Regional Transportation Plan (RTP) model

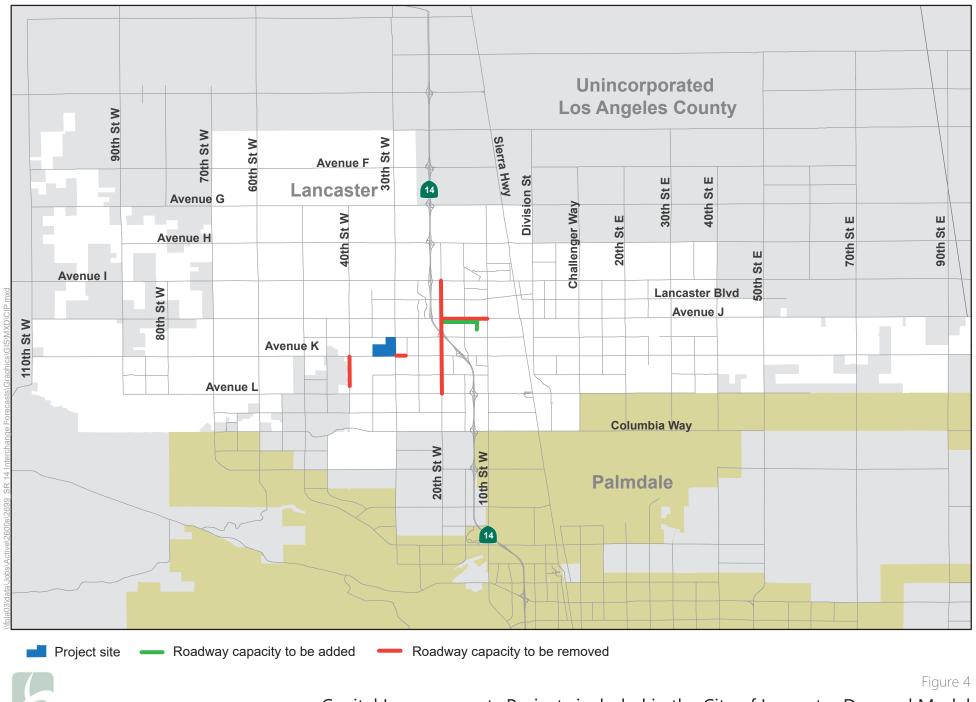
and the 2011 KERN COG model. Each of these land-use based regional models is used to develop vehicle trip demand matrices that are re-assigned to a more detailed roadway network covering northern Los Angeles County and southern Kern County. Below is an overview of each of the models:

- SCAG 2012 RTP This model is developed and maintained by SCAG. A few updates have been made to this model since the release of the 2012 RTP in April 2012; version 6.1 was used as the starting point of the subarea model. The SCAG RTP model has a 2008 Base Year and a 2035 Future Year. It is a regional model that covers six Southern California counties (Los Angeles, Orange, Riverside, San Bernardino, Ventura, and Imperial). The subarea model includes Santa Clarita, northern Los Angeles County, and the Victor Valley in western San Bernardino County.
- Kern COG This model is maintained by the Kern Council of Governments. The version used has a 2006 Base Year, and both Interim (2020) and Buildout (2035-2040) future years. The Kern COG model covers the extent of Kern County, with external gateways to and from SR-14 and I-5 in Los Angeles County. The subarea model includes the entirety of Kern County.

The *City of Lancaster Subarea Model: Model Development Report* (December 2016) contains the full description of the model.

Sub-Area Model Transportation Network

The following projects of regional significance were included in the future year model consistent with the 2012 SCAG RTP/SCS (it should be noted that the regional projects in the 2016 RTP/SCS have not changed within the study area):


- *High Speed Rail* Phase I of the High Speed Rail project, with extents from Anaheim into Kern County. In the model area, the High Speed Rail travels north/south between SR-14 and I-5. The High Speed Rail also travels south on SR-14 into Santa Clarita with a station in Palmdale.
- *High Desert Corridor* New expressway route with limited access beginning at SR-14 and extending east into San Bernardino County. The High Desert Corridor would be a divided highway with two to four travel lanes in each direction.
- *SR-138 between I-5 and SR-14* Planned widening from a 2-lane full-access expressway route with at-grade crossings to a 6-lane limited-access expressway route with interchanges.
- *Sierra Highway between SR-138 and Avenue E* Planned widening from a 2-lane full-access arterial to a 4-lane limited access expressway route (SR-138 extension/High Desert Corridor).
- Avenue E between Sierra Highway and 90th Street East Planned widening from a 2-lane fullaccess collector to a 4-lane limited access expressway route (SR-138 extension).

- 90th Street East between Avenue E and Avenue L Planned widening from a 2-lane full-access collector to a 4-lane limited access expressway route (SR-138 extension).
- *I-5 between Ridge Route Road and SR-14* Construction of an HOV lane in each direction.
- *SR-14 between Avenue M and Technology Drive* Addition of an HOV lane in each direction.

Network improvements within the City of Lancaster include projects from the existing Capital Improvements Projects (CIP) list provided by the City. The following projects, within the study area, were incorporated into the future year model since they result in capacity changes from adding or removing travel lanes. The locations of these changes are shown in Figure 4:

- 40th Street West northbound from three to one lane between Avenue K and Avenue K-4
- 20th Street West in each direction from two lanes to one lane between Avenue I and Avenue J
- 20th Street West in each direction from three to two lanes between Avenue J and Avenue J-8
- 20th Street West in each direction from three to two lanes between Avenue J and Avenue L
- Avenue J westbound from three to two lanes between 15th Street West and 20th Street West
- Avenue J eastbound from three to two lanes between 10th Street W and 20th Street West
- Avenue J-5 constructed with one lane in each direction between 20th Street West and 17th Street
 West and between 15th Street West and 10th Street West

These projected traffic volumes, identified herein as the Future without Project conditions, represent the future conditions without the proposed Project.

Capital Improvements Projects included in the City of Lancaster Demand Model

Transportation Infrastructure Projects

Two transportation infrastructure projects are currently planned or occurring in the vicinity of the Project site (not including the signalization of 30th Street West & West Avenue J-12 as part of the Project). These include improvements to the Avenue J and Avenue J-8 interchanges on State Route 14 (SR-14) and improvements to the Avenue K interchanges on SR-14. Three study intersections are affected by improvements associated with the Avenue J project. While a preferred alternative is not yet known for this Project, all of the Build alternatives include the following network changes, which were included in the analysis of Future without Project and Future with Project conditions for the year 2030:

- Avenue J and 30th Street
 - Convert northbound right-turn lane to a through/right lane
 - Convert southbound right-turn lane to a through/right lane
- Avenue J and 25th Street
 - o Remove one through lane in the westbound direction
 - Add a bicycle lane in each direction, eastbound and westbound, beginning on the east side of the intersection
- Avenue J and SR-14 Southbound Ramps
 - Convert one through lane in each direction, eastbound and westbound, to a bicycle lane, resulting in two through lanes in both eastbound and westbound directions

Three study intersections are affected by improvements associated with the Avenue K project. These were included in the analysis of Future without Project and Future with Project conditions for the year 2030:

- Avenue K & 15th Street/SR-14 northbound on-/off-ramp
 - Add eastbound right-turn lane and convert existing eastbound through/right lane to a through lane
 - o Add northbound left-turn lane and through/right lane
 - o Add southbound through/right lane
 - o Convert existing southbound through/left lane to a left-turn lane
- Avenue K & SR-14 southbound on/off-ramp
 - Add southbound right-turn lane

- Add one westbound through lane, and convert existing westbound through/right lane to a right-turn lane
- Extend eastbound right-turn pocket to provide additional storage for vehicles traveling to southbound on-ramp
- Avenue K & 17th Street
 - o Convert existing southbound through lane to left-turn lane
 - o Convert existing southbound right-turn lane to through/right lane
 - Convert existing northbound through lane to through/right lane

Future Year 2030 Without Project Traffic Volumes

Future without Project weekday AM and PM peak hour traffic volumes and lane geometries for the analyzed intersections are provided in Appendix A. The Future without Project traffic conditions represent an estimate of future conditions without the proposed Project inclusive of the ambient background growth and related projects traffic.

Future With Project Traffic Projections

The proposed Project traffic volumes were added to the year 2030 Future without Project traffic projections, resulting in Future with Project AM and PM peak hour traffic volumes. The Future with Project scenario presents future traffic conditions with the completion of the proposed Project. Appendix A shows the lane configurations and volumes analyzed as part of the Future with Project scenario.

4. INTERSECTION TRAFFIC IMPACT ANALYSIS

The traffic impact analysis evaluates the projected LOS at each study intersection under the Existing with Project and Future with Project conditions to estimate the incremental increase in the V/C ratio caused by the proposed Project. This provides the information needed to assess the potential impact of the Project using significance criteria established by the City of Lancaster.

Criteria for Determination of Significant Traffic Impact

Signalized Intersections

The City of Lancaster has established threshold criteria to determine significant traffic impact of a proposed project in its jurisdiction. A signalized intersection would be significantly impacted if LOS is degraded due to Project-added trips from LOS A, B, C, or D to LOS E or F. A signalized intersection may also be significantly impacted with an increase in V/C ratio equal to or greater than 0.020 for intersections operating at LOS E or F after the addition of project traffic. Intersections operating at LOS A through D after the addition of project traffic are not considered significantly impacted regardless of the increase in V/C ratio.

A stop-controlled intersection would be significantly impacted if LOS is degraded due to Project-added trips from LOS A, B, C, or D to LOS E or F, or if the intersection delay per vehicle increases by 2.0% or more for intersections already operating at LOS E or F before Project trips are added.

Existing With Project Impact Analysis

Existing With Project Traffic Level of Service

The Existing with Project traffic volumes presented in Appendix A were analyzed to determine the projected V/C ratios and LOS for each of the analyzed signalized intersections under this scenario and the projected delay and LOS for the one unsignalized intersection under this scenario. Table 5 summarizes the Existing with Project LOS. Analysis sheets are provided in Appendix C. As indicated in Table 5, all 18 analyzed intersections are projected to operate at LOS D or better during both morning and evening peak hours with the Project. Detailed LOS analysis sheets for the Project are provided in Appendix C.

Existing With Project Intersection Impacts

Table 5 shows that the proposed Project would not result in significant traffic impacts at any of the 18 study intersections.

	Table 5: Existing with Project Intersection Level of Service and Impact Analysis										
ID	N/S Street Name	E/W Street Name	Intersection Control	Analyzed		Existing (2018)		y with (2018)		Significant	
				Period	V/C or Delay	LOS	V/C or Delay	LOS	V/C or Delay	Impact	
1	40th Street West	West Avenue K	Cignolized	AM	0.572	А	0.576	А	0.004	No	
I	40th Street West	West Avenue K	Signalized	PM	0.558	А	0.559	А	0.001	No	
2	35th Street West	West Avenue J-8	All May Stop Controlled	AM	28.2	D	27.8	D	-1.4%	No	
2	35th Street West	west Avenue J-8	All-Way Stop-Controlled	PM	13.2	В	13.1	В	-0.8%	No	
r	22nd Street West/Driveway	et West/Driveway West Avenue K	Signalized	AM	0.501	А	0.517	А	0.016	No	
5	3 32nd Street West/Driveway		Signalized	PM	0.376	А	0.392	А	0.016	No	
4	30th Street West	Most Avenue I	Cionalizad	AM	0.671	В	0.698	В	0.027	No	
4	Soun Street West	West Avenue J	Signalized	PM	0.472	А	0.491	А	0.019	No	
F			C ia sali sal	AM	0.635	В	0.674	В	0.039	No	
5	30th Street West	West Avenue J-8	Signalized	PM	0.514	А	0.543	Α	0.029	No	
		West Avenue J-12/	Two-Way Stop-Controlled	AM	20.9	С	0.424	А	N/A	N/A	
6	30th Street West	New Driveway	(without Project) Signalized (with Project)	PM	13.8	В	0.408	А	N/A	N/A	
7			C'a sella sel	AM	0.638	В	0.691	В	0.053	No	
7	30th Street West	West Avenue K	Signalized	PM	0.490	А	0.528	А	0.038	No	
0		Mart Aug - KO	Cience II and	AM	0.568	А	0.576	А	0.008	No	
8	30th Street West	West Avenue K-8	Signalized	PM	0.447	А	0.454	А	0.007	No	
9	25th Street West	West Avenue J	Signalized	AM	0.466	А	0.473	А	0.007	No	

	Table 5: Existing with Project Intersection Level of Service and Impact Analysis										
ID	N/S Street Name	E/W Street Name	Intersection Control	Analyzed	Existi (201		Existing Project		Project Increase	Significant	
		,		Period	V/C or Delay	LOS	V/C or Delay	LOS	V/C or Delay	Impact	
				PM	0.500	А	0.506	А	0.006	No	
10	25th Street West	West Avenue J-8	Cignalized	AM	0.576	А	0.579	Α	0.003	No	
10	25th Street West	west Avenue J-o	Signalized	PM	0.528	А	0.537	А	0.009	No	
11	25th Street West	West Avenue K	Signalized	AM	0.551	А	0.557	А	0.006	No	
11	25th Street West	West Avenue K	Signalized	PM	0.472	А	0.492	А	0.020	No	
12	SR-14 Southbound	West Avenue J	e J Signalized	AM	0.430	А	0.432	Α	0.002	No	
12	Off-Ramp	West Avenue J		PM	0.483	А	0.489	Α	0.006	No	
13	20th Street West	SR-14 Northbound Signalized	AM	0.559	А	0.559	Α	0.000	No		
15	Zoth Street West	Off Ramp	Signalized	PM	0.586	А	0.586	Α	0.000	No	
14	20th Street West	West Avenue J-8	Signalized	AM	0.481	А	0.478	Α	-0.003	No	
14	Zour Sueer West	West Avenue J-0	Signalized	PM	0.649	В	0.650	В	0.001	No	
15	20th Street West	West Avenue K	Signalized	AM	0.495	А	0.508	А	0.013	No	
13	Zoth Street West	West Avenue K	Signalized	PM	0.541	А	0.552	Α	0.011	No	
16	17th Street West	West Avenue K	Signalized	AM	0.517	А	0.521	Α	0.004	No	
10		West Avenue K	Signalizeu	PM	0.558	Α	0.565	Α	0.007	No	
17	SR-14 Southbound Ramps	West Avenue K	Signalized	AM	0.488	Α	0.495	Α	0.007	No	
17	Six 14 Southbound Kamps	West Avenue K	Signalized	PM	0.593	А	0.608	В	0.015	No	
18	15th Street/SR-14	West Avenue K	Signalized	AM	0.673	В	0.678	В	0.005	No	
10	Northbound Ramps		Signalized	PM	0.837	D	0.854	D	0.017	No	

Future With Project Impact Analysis

Future Without Project Traffic Level of Service

The Future without Project peak hour traffic volumes were analyzed to determine the projected V/C ratio or delay and LOS for each of the analyzed intersections. Table 6 summarizes the future LOS. Seventeen of the 18 study intersections are projected to operate at LOS D or better during both morning and evening peak hours. The unsignalized intersection of 35th Street West & West Avenue J-8 is projected to operate at LOS F during both the AM and PM peak hours. Detailed LOS analysis sheets are provided in Appendix C.

Future With Project Traffic Level of Service

The Future with Project peak hour traffic volumes, provided in Appendix A, were analyzed to determine the projected future operating conditions with the addition of the proposed Project traffic. The results of the Future with Project analysis are also presented in Table 6, with analysis sheets provided in Appendix C. Seventeen of the 18 study intersections are projected to operate at LOS D or better during both morning and evening peak hours. The unsignalized intersection of 35th Street West & West Avenue J-8 is projected to operate at LOS F during both the AM and PM peak hours. Detailed LOS analysis sheets are provided in Appendix C.

Future With Project Intersection Impacts

As shown in Table 6, using the criteria for determination of significant impacts, it is determined that the proposed Project would not result in significant impacts at any of the 18 intersections under Future with Project conditions.

	Table 6: Future with Project Intersection Level of Service and Impact Analysis										
ID	N/S Street Name	E/W Street Name	Intersection Control	Analyzed	Future w Project (Future Project (Project Increase	Significant	
		_,		Period	V/C or Delay	LOS	V/C or Delay	LOS	V/C or Delay	Impact	
1	40th Street West	West Avenue K	Cignalizad	AM	0.606	В	0.610	В	0.004	No	
1	40th Street West	West Avenue K	Signalized	PM	0.608	В	0.610	В	0.002	No	
2	35th Street West	West Avenue J-8	All May Stop Controlled	AM	76.0	F	75.3	F	-0.9%	No	
2	Som Street West	West Avenue J-8	All-Way Stop-Controlled	PM	60.3	F	59.9	F	-0.7%	No	
r	22 ad Charact Weath (Driver and	Mart August K	Signalized	AM	0.561	Α	0.577	А	0.016	No	
3	3 32nd Street West/Driveway West	West Avenue K		PM	0.461	Α	0.472	А	0.011	No	
4	20th Chroat Most	Mart August I	Signalized	AM	0.680	В	0.707	С	0.027	No	
4	30th Street West	West Avenue J		PM	0.565	Α	0.584	А	0.019	No	
-				AM	0.724	С	0.762	С	0.038	No	
5	30th Street West	West Avenue J-8	Signalized	PM	0.598	Α	0.628	В	0.030	No	
		West Avenue J-12/	Two-Way Stop-Controlled	AM	23.9	С	0.414	А	N/A	N/A	
6	30th Street West	New Driveway	(without Project) Signalized (with Project)	PM	16.5	С	0.387	А	N/A	N/A	
-				AM	0.664	В	0.715	С	0.051	No	
7	30th Street West	West Avenue K	Signalized	PM	0.542	Α	0.582	А	0.040	No	
0			C'a cali a d	AM	0.596	А	0.603	В	0.007	No	
8	30th Street West	West Avenue K-8	Signalized	PM	0.503	А	0.516	А	0.013	No	
0				AM	0.547	А	0.562	А	0.015	No	
9	25th Street West	West Avenue J	Signalized	PM	0.599	А	0.608	В	0.009	No	

	Table 6: Future with Project Intersection Level of Service and Impact Analysis										
ID	N/S Street Name	E/W Street Name	Intersection Control	Analyzed	Future without Project (2030)		Future with Project (2030)		Project Increase	Significant	
				Period	V/C or Delay	LOS	V/C or Delay	LOS	V/C or Delay	Impact	
10				AM	0.592	А	0.595	А	0.003	No	
10	25th Street West	West Avenue J-8	Signalized	PM	0.556	А	0.565	А	0.009	No	
				AM	0.579	А	0.585	А	0.006	No	
11	25th Street West	25th Street West West Avenue K	Signalized	PM	0.517	Α	0.536	А	0.019	No	
10	SR-14 Southbound			AM	0.585	А	0.588	А	0.003	No	
12	Off-Ramp	West Avenue J	Signalized	PM	0.647	В	0.656	В	0.009	No	
10	20th Chreat Mast	SR-14 Northbound Off Ramp	Signalized	AM	0.600	А	0.600	А	0.000	No	
13	20th Street West			PM	0.626	В	0.626	В	0.000	No	
14	20th Chreat Mast	Mart Average 1.0	Circulized	AM	0.544	А	0.546	А	0.002	No	
14	20th Street West	West Avenue J-8	Signalized	PM	0.713	С	0.712	С	-0.001	No	
1 Г	20th Street West	West Avenue K	Circulized	AM	0.538	А	0.551	А	0.013	No	
15	20th Street West	West Avenue K	Signalized	PM	0.588	А	0.597	А	0.009	No	
10			C'a sal' sal	AM	0.566	А	0.569	А	0.003	No	
16	17th Street West	West Avenue K	Signalized	PM	0.682	В	0.689	В	0.007	No	
17	CD 14 Couthbarred Dourse	Mart America K	Circulized	AM	0.479	Α	0.485	А	0.006	No	
17	SR-14 Southbound Ramps	West Avenue K	Signalized	PM	0.541	А	0.547	А	0.006	No	
10	15th Street/SR-14			AM	0.595	А	0.600	А	0.005	No	
18	Northbound Ramps	West Avenue K	Signalized	PM	0.682	В	0.688	В	0.006	No	

Transit System Project Impacts

This section discusses impacts related to the transit system. This section evaluates whether impacts could include disruptions to existing transit service, interference with planned transit facilities, conflict with adopted transit system plans, guidelines, policies, or standards, or create demand for public transit above the available capacity.

Disruptions to Existing Transit Service

Significance Criteria

A significant impact would occur if a project disrupts existing transit services or facilities. This includes disruptions on transit streets caused by proposed project driveways, impacts to transit stops/shelters, and impacts to transit operations from traffic improvements proposed or resulting from the Project.

Project Impact

Bus stops, and ADA-accessible sidewalks and curb ramps that provide access to the bus stops, exist at the intersections below:

- 1. 30th Street West & West Avenue J-8 (SB)
- 2. 30th Street West, between West Avenue J-9 and West Avenue J-12 (SB)
- 3. 30th Street West & West Avenue J-12 (NB)
- 4. 30th Street West & West Avenue K (NB)
- 5. 30th Street West & West Avenue K (EB)

The project is anticipated to improve one northbound and one southbound bus stop each on 30th Street West between West Avenue J-9 and West Avenue J-12. The southbound bus stop would be relocated approximately 500 feet south, to just south of the new campus driveway at Avenue J-12. The remaining bus stops in the vicinity of the project will remain unchanged. Therefore, the impact is less than significant.

Interference with Planned Transit Services

Significance Criteria

A significant impact occurs if a project interferes with planned transit services or facilities.

Project Impact

Based on a review of available documents, including Antelope Valley Transit Authority's Comprehensive Long Range Transit Plan (2010), there are no planned transit services that would be impacted by the development of the Project. Therefore, the impact is less than significant.

Inconsistencies with Adopted Transit System Plans, Guidelines, Policies, or Standards

Significance Criteria

A significant impact occurs if a project conflicts or creates inconsistencies with adopted transit system plans, guidelines, policies, or standards.

Project Impact

The proposed project will not result in any significant impacts to increased transit usage. Therefore, the impact is less than significant.

Bicycle Network Project Impacts

This section reviews project-related impacts on the bicycle network in the study area. Potential impacts include disruptions to existing facilities, interference with planned facilities, and conflicts with adopted plans, guidelines, policies, or standards relating to bicycles.

Disruptions to Existing Facilities

Significance Criteria

A significant impact occurs if a project disrupts existing bicycle facilities.

Project Impact

Bicycle facilities within the study area include on-street bicycle lanes on West Avenue J-8, 40th Street West, 35th Street West, and 30th Street West. The proposed project will not result in any significant impacts to existing bicycle facilities. Therefore, the impact is less than significant.

Interference with Planned Bicycle Facilities

Significance Criteria

A significant impact occurs if a project interferes with planned bicycle facilities. This includes failure to dedicate rights-of-way for planned on- and off-street bicycle facilities included in an adopted Bicycle Specific Plan or to contribute towards construction of planned bicycle facilities along the project frontage.

Project Impact

There are no bicycle facilities planned within the study area. Thus, the project impact is not significant.

Conflicts with Adopted Bicycle Plans, Guidelines, Policies, or Standards

Significance Criteria

A significant impact occurs if the project conflicts or creates inconsistencies with adopted bicycle system, plans, guidelines, policies, or standards.

Project Impact

In 2012, the City of Lancaster adopted a Master Plan of Trails and Bikeways. The Master Plan recognized the public health benefits of increased bicycling and the importance of providing safe and comfortable bicycle facilities. The Project does not conflict with or create inconsistencies with the adopted bicycle system, plans, guidelines, policies, or standards. Therefore, this impact is less than significant.

Pedestrian Network Project Impacts

This section reviews Project-related impacts on the pedestrian network in the study area. Potential impacts include disruptions on existing facilities, interference with planned facilities, and conflicts with adopted plans, guidelines, policies, or standards relating to pedestrians.

Disruptions to Existing Facilities

Significance Criteria

A significant impact occurs if a project disrupts existing pedestrian facilities. This can include adding new vehicular, pedestrian, or bicycle traffic at locations experiencing pedestrian safety concerns including: reduction in the number of pedestrian-acceptable gaps at unsignalized crossings or queues spilling back through pedestrian crossings.

Project Impact

Pedestrian walkways exist within the study area along all but West Avenue K-8. The pedestrian network will be maintained along these ways. Since no existing pedestrian facilities would be affected by the project, the project impact is less than significant.

Interference with Planned Pedestrian Facilities

Significance Criteria

A significant impact occurs if a project interferes with planned pedestrian facilities. In existing or planned urbanized areas, main streets, or pedestrian districts, this can include impacts to the quality of the walking environment.

Project Impact

No planned pedestrian facilities would be affected by the project. The project impact is less than significant.

Conflicts with Adopted Pedestrian Plans, Guidelines, Policies, or Standards

Significance Criteria

A significant impact occurs if a project conflicts or creates inconsistencies with adopted pedestrian system plans, guidelines, policies, or standards.

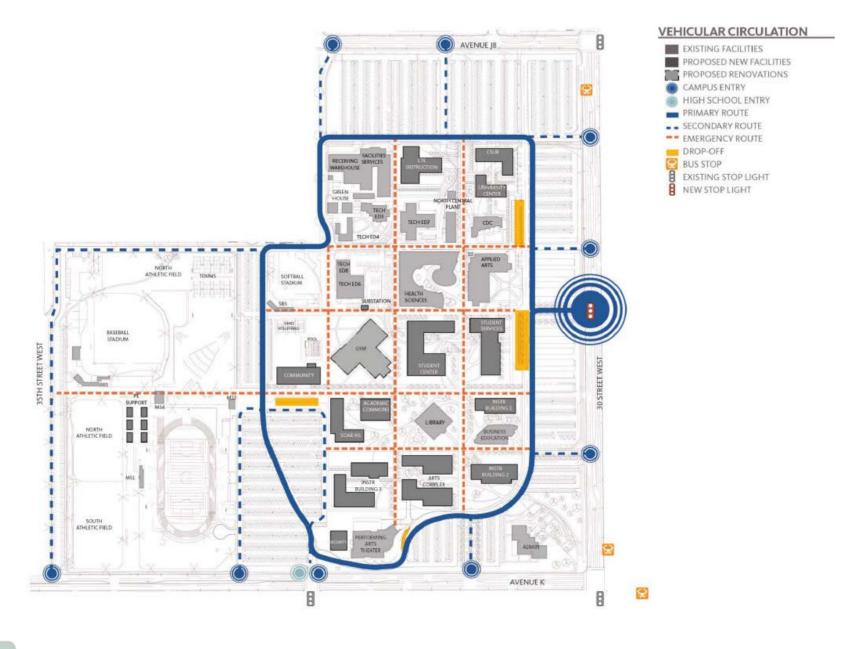
Project Impact

The project does not conflict with adopted pedestrian system plans, guidelines, policies, or standards.

5. PARKING AND SITE CIRCULATION ANALYSIS

This chapter presents an analysis of the parking supply and access system proposed by the Project. The 2016 FMP includes an estimate of parking need and supply, which is presented here. Issues relating to the project's proposed site access scheme were also evaluated.

Parking Guidelines


2016 Facilities Master Plan

The 2016 FMP includes guidelines for determining parking need and presents an inventory of existing parking supply, as shown in Table 7. Under Future with Project conditions, the campus is expected to have a surplus of parking supply.

Table 7: Parking Need and Supply											
Year	Enrollment	Spaces Needed (1 space per 5 enrolled)	Existing Supply	Excess Capacity							
2018	12,946	2,589	3,794	1,205							
2030	15,908	3,182	3,794	612							

Site Access and Circulation

As shown in Figure 5 and described above, the Project includes construction of a new driveway at the intersection of 30th Street West & West Avenue J-12 and the closure of two existing driveways on 30th Street West, located immediately south of the new access point. Two new pick-up and drop-off locations are planned: one on the east side of campus, near the new 30th Street entry, and one on the west side of campus, between the new Community Center and SOAR High School. Internal circulation within the Project site is provided in a loop connecting parking lots on the north, east, and south ends of campus with campus buildings and adjacent neighborhood streets to the west and northwest.

As shown in Figure 6, the Project will add pedestrian site access at the intersections of 30th Street West & West Avenue K and 30th Street West and the northernmost driveway on the east side of campus. Primary, secondary, and tertiary paths provide internal circulation for pedestrians, connecting bus stops along 30th Street West and parking lots on the perimeter of campus to buildings and areas of student gathering internal to the Project site.

Figure 6 Site Access and Pedestrian Circulation

6. REGIONAL TRANSPORTATION SYSTEM ANALYSIS

This section presents the regional transportation system impact analysis, conducted in accordance with the procedures outlined in *2010 Congestion Management Program for Los Angeles County* (Metro, October 2010). The CMP requires that when an environmental impact report is prepared for a project, traffic impact analyses be conducted for select regional facilities based on the quantity of project traffic expected to use these facilities.

It should be noted that as a result of SB 743, passed in September 2013, and subsequent revisions to CEQA, Metro will also be revising its CMP requirements to reflect the new legislation. The analysis described here conforms to existing CMP guidelines.

Congestion Management Program

CMP Regional Traffic Impact Analysis

The CMP guidelines require that the first issue to be addressed is the determination of the geographic scope of the study area. The criteria for determining the study area for CMP arterial monitoring intersections and for freeway monitoring locations are:

- All CMP arterial monitoring intersections where the proposed project will add 50 or more trips during either the AM or PM peak hours of adjacent street traffic.
- All CMP mainline freeway monitoring locations where the proposed project will add 150 or more trips, in either direction, during either the AM or PM peak hours.

Significant CMP Traffic Impact Criteria

The CMP traffic impact analysis guidelines establish that a significant project impact occurs when the following threshold is exceeded:

- The proposed project increases traffic demand on a CMP facility by 2% of capacity (V/C 0.02), causing LOS F (V/C > 1.00)
- If the facility is already at LOS F, a significant impact occurs when the proposed project increases traffic demand on a CMP facility by 2% of capacity (V/C 0.02)

Arterial CMP Monitoring Station Analysis

The CMP arterial monitoring stations nearest to the Project site are the intersections of Avenue D & 60th Street West (approximately 10.0 miles away) and Palmdale Boulevard & Sierra Highway (approximately 10.3 miles away). Neither of these are study intersections. Based on the Project trip generation estimates presented in Table 4 and a review of the Project trip assignment presented in Appendix A, the Project is expected to add fewer than 50 peak hour vehicle trips through either of these CMP arterial monitoring stations. Therefore, Project impacts on the CMP arterial system are considered to be less than significant and no further CMP arterial analysis is required.

Freeway CMP Impact Analysis

The 2010 Congestion Management Program (CMP) (Metro, 2010) for Los Angeles County requires that all CMP mainline freeway monitoring locations where a proposed Project will add 150 or more trips, in either direction, during either the AM or PM peak hours be analyzed. The closest CMP freeway monitoring stations to the Project are located on SR-14 south of Angeles Forest Highway (approximately 14.6 miles away) and on SR-14 at the junction of Route 48 (approximately 7.0 miles away). Based on the incremental Project trip generation estimates and Project trip assignment, the Project would not add enough new traffic to exceed the freeway analysis criteria at either of these locations. Because incremental Project-related traffic in any direction during either weekday peak hour is projected to be below the minimum criterion of 150 one-way vehicles per hour, Project impacts on the CMP regional freeway system are considered to be less than significant and no further CMP freeway analysis is required.

Regional Transit Impact Analysis

Potential transit related person-trips generated by the proposed Project were estimated. Appendix D.8.4 of the 2010 CMP provides a methodology for estimating the number of transit trips expected to result from a proposed Project based on the projected number of vehicle trips. This methodology assumes an average vehicle ridership (AVR) factor of 1.4 in order to estimate the number of person trips to and from the Project and then provides guidance regarding the percentage of person trips assigned to public transit depending on the type of use (commercial/other versus residential) and the proximity to transit services. Appendix D.8.4 of the 2010 CMP recommends summarizing the fixed-route local bus services within 1/4 mile of the Project site and express bus routes and rail service within two miles of the Project site.

The Project is located within ¹/₄ mile of bus stops serving Antelope Valley Transit Authority Local Routes 7, 9, 11, and 12, and within 2 miles of Kern Transit Express Routes 100 and 250. Approximately 15% of total person trips generated by the Project are conservatively assumed to use transit to travel to and from the site. The proposed Project would have an estimated increase in trip generation of approximately 326 trips

during the AM peak hour and 326 during the PM peak hour. Applying the AVR factor of 1.4 to the estimated trips would result in an estimated increase of approximately 456 person trips during each peak hour. Applying the 15% transit use would result in approximately 68 new transit person trips during each of the weekday AM and PM peak hours.

Within a ¹/₄ mile of the Project site, Antelope Valley Transit Authority operates Local Route 7 (approximately 30-minute headways during the peak hours), Route 9 (approximately 45-minute headways during the peak hours), Route 11 (approximately 35-minute headways during the peak hours), and Route 12 (approximately 25-minute headways during the peak hours). Within the two miles of the Project site, Kern Transit operates Route 100 with more than 60-minute headways during peak hours and Route 250 with 45-minute headways during peak hours. The total of these services has an estimated seating capacity of 560 persons per hour during the peak periods based on a seating capacity of 40 persons per bus. The proposed Project would utilize up to 12% of available transit capacity during the peak hours using the CMP assumption of transit trips equating to 15% of person trips. At this level of transit capacity utilization, the Project is not anticipated to result in a significant CMP transit impact.

At this level of absorption of transit system capacity, it is concluded that Project-related impacts to the regional transit system would not be significant.

7. SUMMARY AND CONCLUSIONS

The following summarizes the results of the Project transportation impact analysis for the proposed Antelope Valley Community College District 2016 Facilities Master Plan:

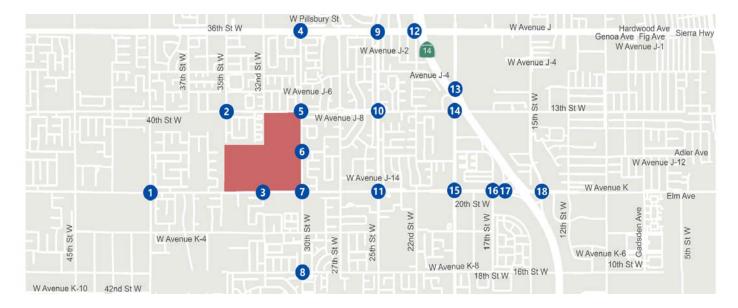
- The Project consists of increasing student enrollment to 15,908 students in 2030 from the current level of 12,946 students in the Spring of 2018.
- The Project also involves addition of a new signalized driveway at the intersection of 30th Street West & West Avenue J-12 and the closure of two existing driveways currently located immediately south of that intersection.
- The Project is expected to generate approximately 3,236 daily trips, including 310 trips during the AM peak hour, and 310 trips during the PM peak hour.
- The LOS analysis for the Existing with Project scenario determined that the Project would not result in significant impacts at any of the 18 study intersections. The LOS analysis for the Future with Project scenario determined that the Project would not result in significant impacts at any of the 18 study intersections.
- The Project will require 3,182 parking spaces, according to the 2016 FMP guidelines. Under Future with Project conditions, the Project will provide 3,794 spaces, more than meeting the estimated parking need.
- The project would not result in a significant impact to any CMP arterial or freeway monitoring stations. The projected level of additional transit riders generated by the proposed Project would not result in a significant impact on public transit services in the vicinity of the Project.

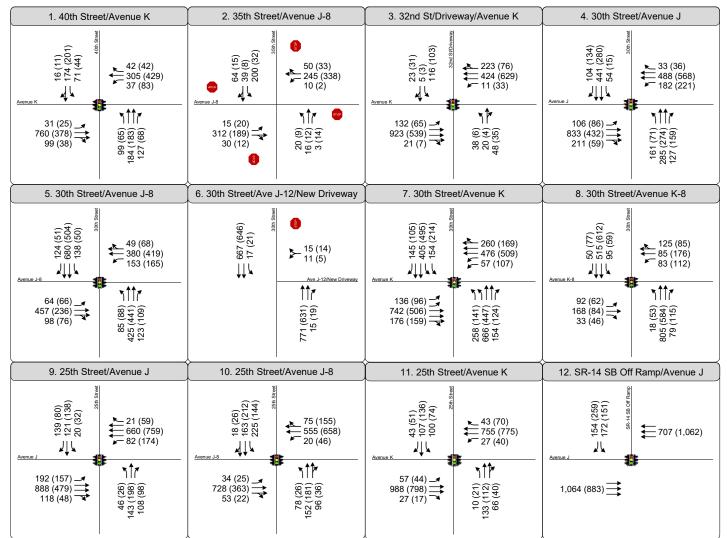
REFERENCES

2010 Congestion Management Program for Los Angeles County, Metro, October 2010.

2016 Facilities Master Plan, Antelope Valley Community College District, 2016.

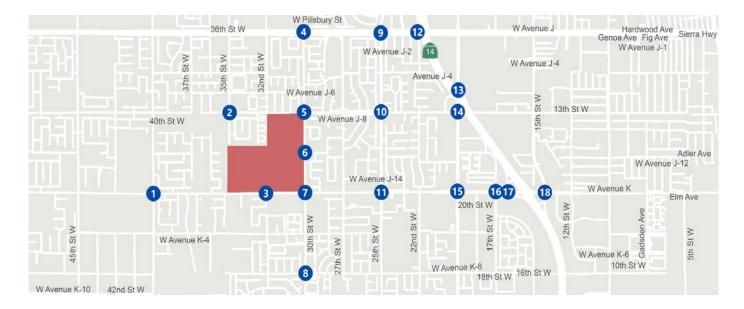
City of Lancaster Subarea Model: Model Development Report, Fehr & Peers, 2016.

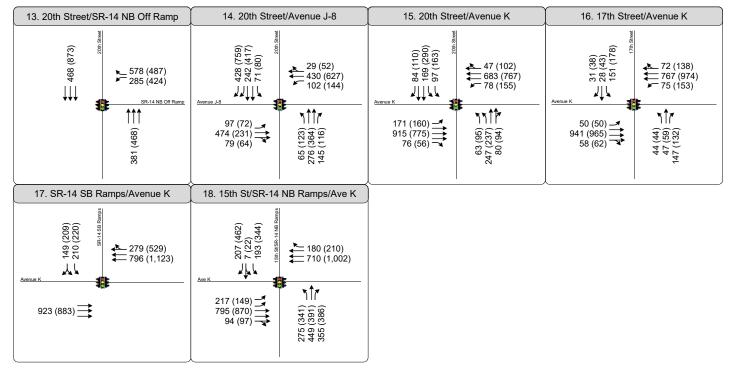

Highway Capacity Manual, Transportation Research Board, 2010.


Transportation Research Circular No. 212, *Interim Materials on Highway Capacity*, Transportation Research Board, 1980.

Trip Generation, 10th Edition, Institute of Transportation Engineers (ITE), 2017.

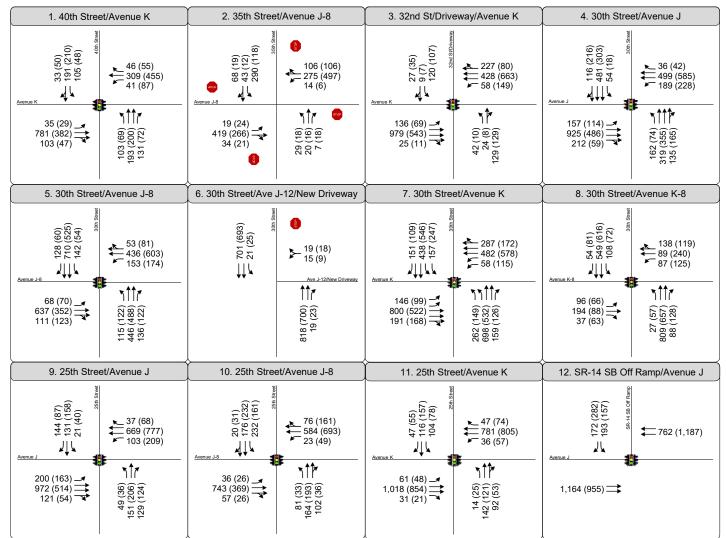
Appendix A: Lane Configurations and Traffic Volumes

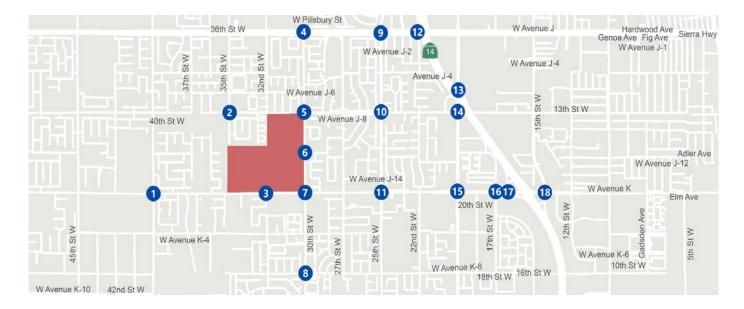


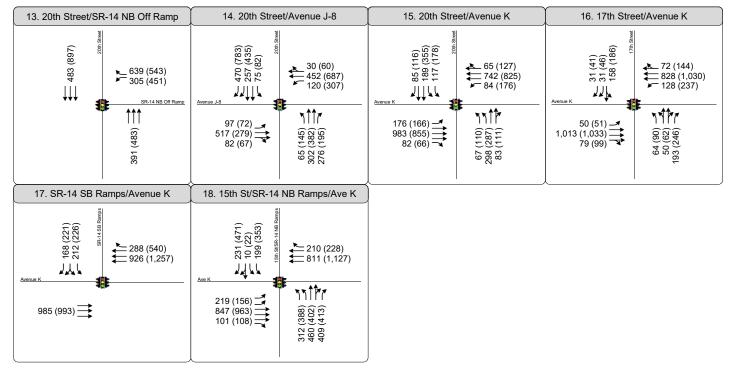


Appendix A1 Peak Hour Traffic Volumes and Lane Configurations Existing Conditions

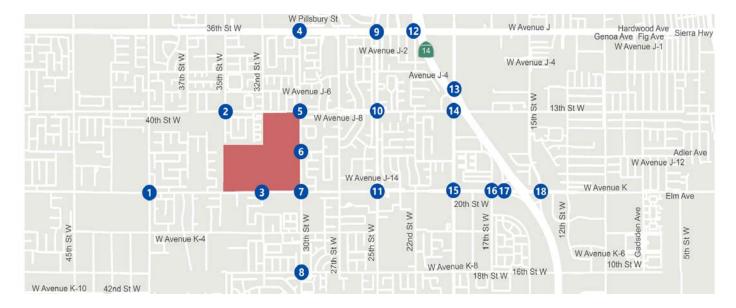


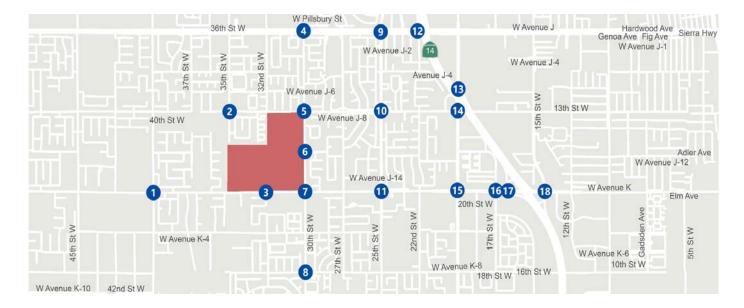


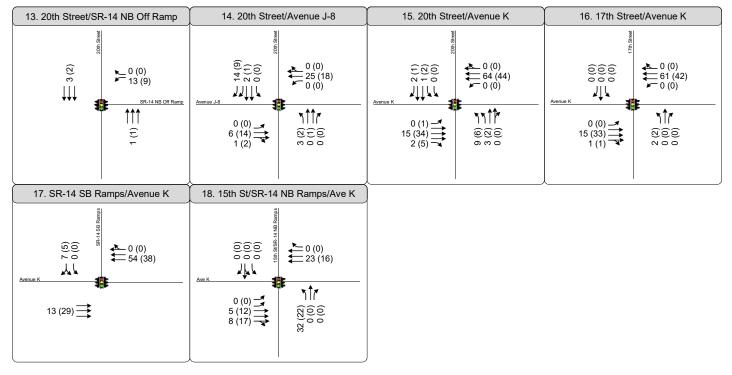

Appendix A1 Peak Hour Traffic Volumes and Lane Configurations Existing Conditions



Appendix A2 Peak Hour Traffic Volumes and Lane Configurations Future without Project

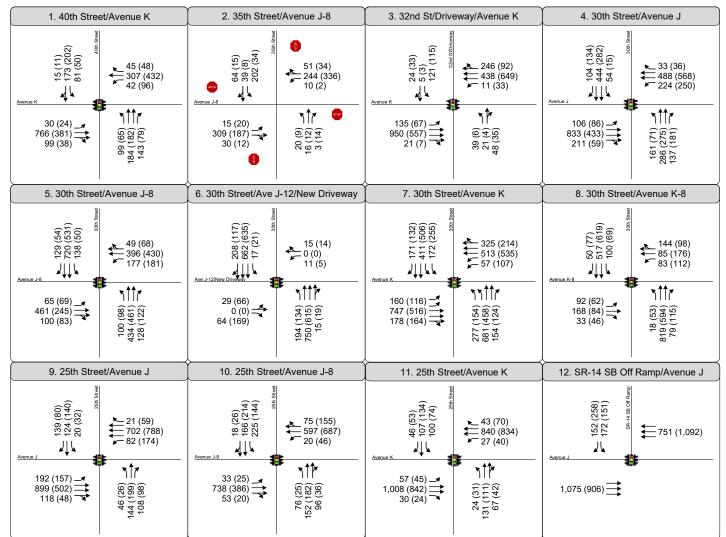




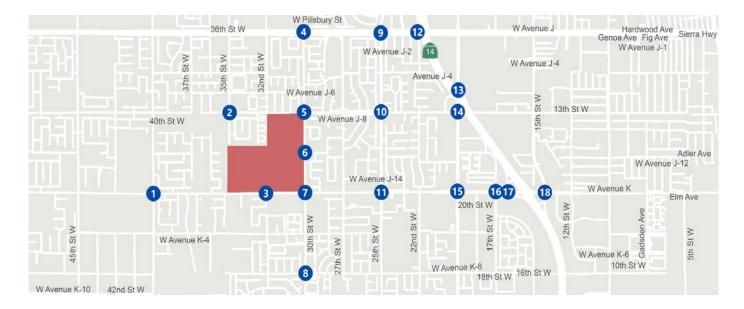

Appendix A2 Peak Hour Traffic Volumes and Lane Configurations Future without Project

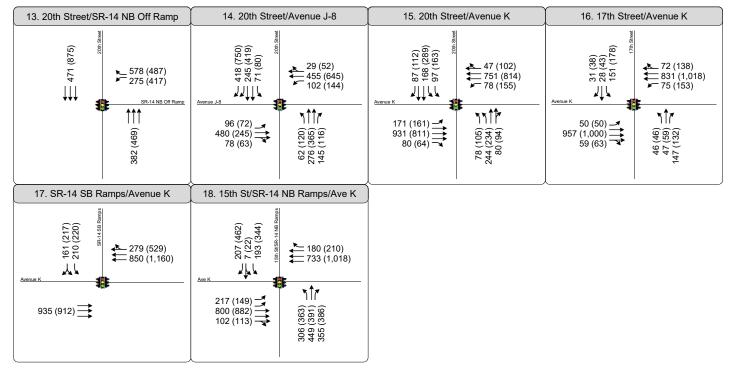
1. 40th Street/Avenue K	2. 35th Street/Avenue J-8	3. 32nd St/Driveway/Avenue K	4. 30th Street/Avenue J
Avenue K 1 (1) 4 (2) 0 (0) 1 (1) 4 (2) 1 (1) 4 (2) 1 (1) 4 (2) 1 (1) 4 (2) 1 (2)	$\begin{array}{c c} & & & & & & & \\ & & & & & & \\ & & & & $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 23 & (16) \\ 23 & (2) \\ 20 & (14) \\ 0 & (0) \end{array} \end{array} \end{array} \xrightarrow{\begin{array}{c} 23 & (16) \\ 13 & (16) \\ 0 & (0) \end{array}} \\ \begin{array}{c} \begin{array}{c} 23 & (16) \\ 13 & (16) \\ 0 & (0) \end{array} \\ \begin{array}{c} \begin{array}{c} 0 & (0) \\ 0 & (0) \end{array} \end{array}$	Avenue J (0) (0) (0) (0) (0) (0) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
5. 30th Street/Avenue J-8	6. 30th Street/Ave J-12/New Driveway	7. 30th Street/Avenue K	8. 30th Street/Avenue K-8
$\begin{array}{c} \underbrace{(3)}{(2)}\\ \underbrace{(3)}{(2)}$	Are 3-1:5/New Drivenes 6 (13) 9 (21) 4 (13) 0 (0) 9 (21) 4 (13) 0 (0) 0 (0) 4 (13) 0 (0) 0 (0)	48 (33) 37 (26) 20 (23) 1 6 (14) 1 20 (23) 1 6 (14) 1 48 (33) 37 (26) 11 (26) 11 (27) 6 (14) 1 6 (14) 1 12 (27) 6 (14) 1 12 (27) 1 12 (2	Avenue K-8 0 (0) 0 (0
9. 25th Street/Avenue J	10. 25th Street/Avenue J-8	11. 25th Street/Avenue K	12. SR-14 SB Off Ramp/Avenue J
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\$	$\begin{array}{c} \overbrace{\begin{array}{c} \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} \overbrace{(1)}^{0} (1$	NO NO <



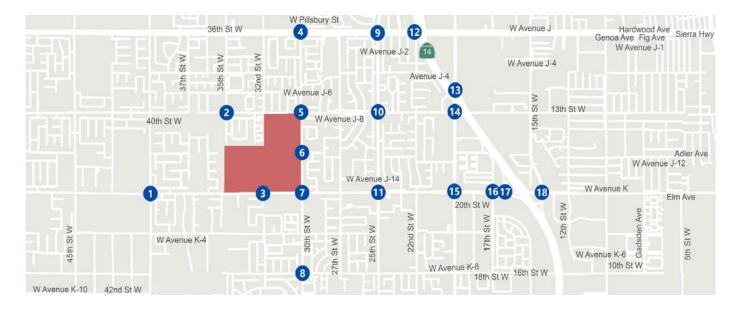


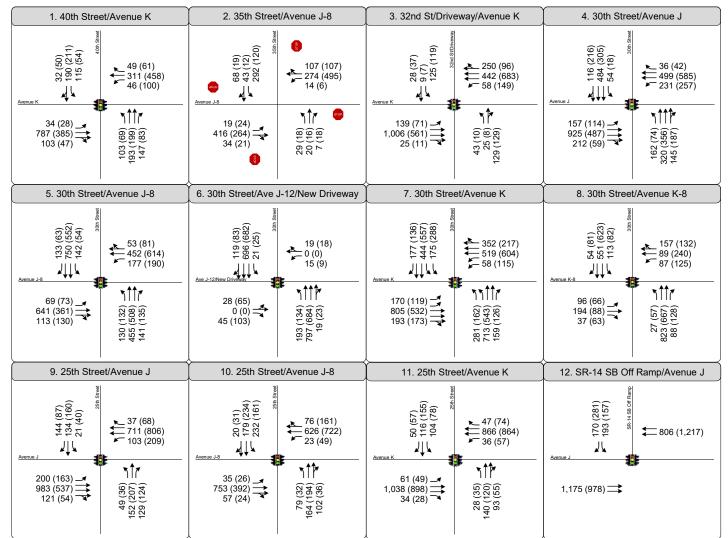
Appendix A3 Peak Hour Traffic Volumes Project Only

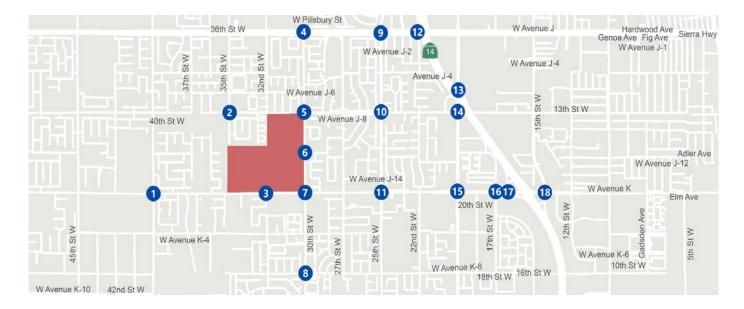


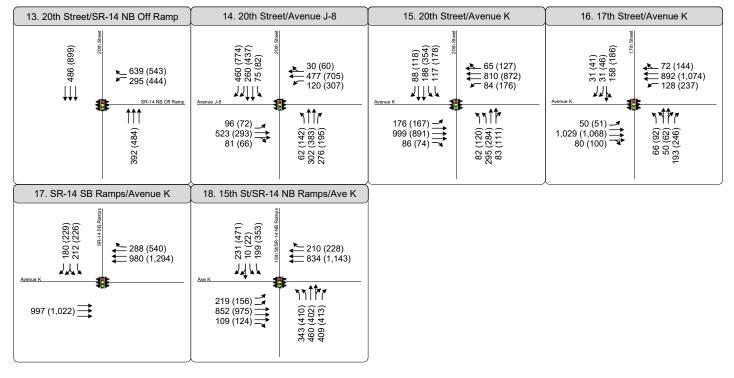


Appendix A4 Peak Hour Traffic Volumes and Lane Configurations Existing with Project






Appendix A4 Peak Hour Traffic Volumes and Lane Configurations Existing with Project



Appendix A5 Peak Hour Traffic Volumes and Lane Configurations Future with Project

Appendix A5 Peak Hour Traffic Volumes and Lane Configurations Future with Project

Appendix B: Turning Movement Count Sheets

Location: 40th St & Avenue K City: Lancaster Control: Signalized

Project ID: 18-05266-001 Date: 4/26/2018

7:00 AM 20 35 9 0 6 33 1 0 4 82 14 0 12 79 5 0 300 7:15 AM 23 46 21 0 7 45 4 0 3 136 18 0 9 85 11 0 408 7:30 AM 26 49 23 62 3 0 11 196 31 0 11 69 14 0 518 7:45 AM 28 59 49 0 28 38 6 0 12 249 22 0 8 75 10 0 584 8:00 AM 22 30 34 0 13 29 3 0 5 179 28 0 9 76 7 0 435 8:01 SA 9 22 21 0 13 16 7 0 1 94 8 0 5 40 5 0 241 <t< th=""><th>Control:</th><th>Signalized</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Date: 4</th><th>4/26/2018</th><th></th><th></th></t<>	Control:	Signalized													Date: 4	4/26/2018		
AM NORTHBOUND SOUTHBOUND EASTBOUND IEASTBOUND WESTBOUND WESTBOUND 7:00 AH 2 1 0 1 0.5 0.5 0 1 2 0 0 1 1 1 0 0 7:00 AH 20 35 9 0 6 33 1 0 4 82 14 0 12 79 5 0 30 7:30 AH 26 49 2.3 6.6 33 0 11 156 18 0 9 85 11 0 408 7:30 AH 26 49 2.3 6.6 12 249 2.2 0 8 75 0 0 158 8 0 9 75 7 0 458 158 159 4 1 0 2 9 9 0 11 36 12 0 241 1 0 2	-								To	tal								
AM 1 2 1 0 1 0.5 0.5 0 1 2 0 0 1 1 1 1 1 0 0 7:00 AM 20 25 9 0 6 33 1 0 4 82 14 0 12 79 5 0 300 7:15 AM 23 46 21 0 7.45 4 0 33 16 14 82 14 0 11 69 14 0 58 7:45 AM 28 59 49 0 18 16 2 0 6 115 9 0 7 7 0 435 8:00 AM 9 22 18 0 13 16 7 0 1 94 8 0 5 12 0 7 3 0 25 33 0 2 95 9	NS/EW Streets:		40th	n St			40th	St			Avenu	ie K			Avenu	ie K		
NL NL NT NR NU ST SR SU EL ET ER EU WL WT WR WU OTAL 7:15 AM 23 46 21 0 7 45 4 0 3 136 18 0 9 85 11 0 408 7:35 AM 26 49 23 0 23 62 3 0 12 249 22 0 8 75 10 0 485 8:00 M 22 30 34 0 13 16 7 0 135 9 0 7 37 3 0 265 8:30 M 9 25 18 0 13 16 7 0 435 9 0 7 37 3 0 262 8:45 AM 10 22 12 0 115 263 27 0 1 <th></th> <th></th> <th>NORTH</th> <th>BOUND</th> <th></th> <th></th> <th>SOUTH</th> <th>BOUND</th> <th></th> <th></th> <th>EASTB</th> <th>OUND</th> <th></th> <th></th> <th>WESTB</th> <th>OUND</th> <th></th> <th></th>			NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
NL NL NT NR NU ST SR SU EL ET ER EU WL WT WR WU OTAL 7:15 AM 23 46 21 0 7 45 4 0 3 136 18 0 9 85 11 0 408 7:35 AM 26 49 23 0 23 62 3 0 12 249 22 0 8 75 10 0 485 8:00 M 22 30 34 0 13 16 7 0 135 9 0 7 37 3 0 265 8:30 M 9 25 18 0 13 16 7 0 435 9 0 7 37 3 0 262 8:45 AM 10 22 12 0 115 263 27 0 1 <th>AM</th> <th>1</th> <th>2</th> <th>1</th> <th>0</th> <th>1</th> <th>0.5</th> <th>0.5</th> <th>0</th> <th>1</th> <th>2</th> <th>0</th> <th>0</th> <th>1</th> <th>1</th> <th>1</th> <th>0</th> <th></th>	AM	1	2	1	0	1	0.5	0.5	0	1	2	0	0	1	1	1	0	
7:15 AM 23 46 21 0 7 45 4 0 3 136 18 0 9 85 11 0 408 7:45 AM 28 59 49 0 23 62 3 0 11 196 31 10 11 69 14 0 58 8:00 M 22 30 34 0 13 120 249 22 0 8 75 10 0 458 8:15 AM 9 22 11 0 13 16 2 0 6 115 28 0 7 3 0 255 30 0 21 241 8:30 M 10 22 12 0 7 24 1 0 2 95 9 0 11 36 12 241 01 22 13 0.00 6.84 0.00 115 26.34 0.78 0.00 122 294 0 11 26.33 0.00 0.73		NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL		WR	WU	TOTAL
7:30 AM 26 49 23 62 33 0 11 196 31 0 11 69 14 0 518 8:00 AM 22 30 34 0 13 29 3 0 5 179 28 0 9 76 7 0 458 8:00 AM 9 22 18 0 13 16 2 0 6 115 9 0 7 37 3 0 255 8:30 AM 9 22 12 0 7 24 1 0 2 95 9 0 11 36 12 0 241 8:30 AM 9 22 12 0 7 24 1 0 2 95 9 0 11 36 12 0 241 8:30 AM 10 28 57 58 S9 EL ET ER EU WL WL WT WR WU 173 30.5 42 0.000					0			1					0			5		
7:45 AM 28 9 49 0 28 38 6 0 12 249 22 0 8 75 10 0 584 8:00 M 22 30 34 0 13 29 3 0 5 179 28 0 9 75 73 3 0 255 8:35 AM 9 25 18 0 13 16 7 0 1 94 8 0 5 40 5 0 241 8:45 AM 10 22 18 0 115 263 27 0 44 146 139 0 72 497 67 0 292 APPROACH 1071 288 187 0 115 263 27 0 44 1146 139 0 72 497 67 0 292 APPROACH 0715 30.06% 0.00% 84.9% 67.9% 0.00% 313% 86.23% 0.00% 11.3 10 0													•					
8:00 AM 8:35 AM 8:30 AM 8:30 AM 8:45 AM 22 9 30 22 34 12 0 13 13 16 29 7 3 0 0 1 13 9 28 25 0 18 9 5 76 40 7 5 7 0 7 24 7 1 7 0 7 1 7 24 7 1 7 0 1 2 95 9 9 0 0 111 36 36 12 0 241 7 241 24 241 TOTAL PPRACH %: NL 23.53% NT NR NU 115 SL 263 ST SR SU 263 EL ET ER EU 80.00 NL 0.72 WIL 247 WT WR WU WU 241 241 PPRACH %: 107.15 AM 0.755 M 0.00% 28.40% 6.6.7% 0.00% 3.11% 86.23% 0.06% 0.07% 1.15 M 0.00% 2.99 0 1.1 2.0 0.00% 2.99 0 37 3.0 42 0 0.00% 2.99 0 3.7 3.0 42 0 0.00% 2.99 0 3.7 3.0 42 0 0 1.1 1.4 0 0.72 0.76 0.70 0.00%																		
8:15 AM 9 22 21 0 18 16 2 0 6 115 9 0 7 37 3 0 255 24 8:35 AM 10 22 12 0 7 24 1 0 2 95 9 0 11 36 12 0 24 24 TOTAL VOLUMES: NL NT NR NU SL ST SR SU EL ET ER EU WL WT WR WU TOTAL APPROACH %: 12.73 46.30% 0.00% 28.40% 64.3% 0.00% 28.40% 64.3% 0.00% 28.40% 0.00% 3.31% 86.23% 0.40% 0.00% 1.20% 0.00% 28.40% 0.00% 0.64% 0.00% 0.444 1146 139 0.0 7.5 49.7 6.7 0.00% 1.20% 0.75% 0.00% 0.841 0.833 0.5 4.2 0 0.94 1.945 0.75% 0.02% 0.841 0.75% 0.00% 0									·····									
8:30 AM 9 25 18 0 13 16 7 0 1 94 8 0 5 40 5 0 241 8:35 AM 10 22 12 0 7 24 1 0 2 95 9 0 11 36 12 0 241 TOTAL VOLUMES: NL NT NR NU SL ST SR SU EL ET ER EU WL WT WR WU 2724 497 67 0 292 APPRACH %'s : 23.63% 46.30% 30.06% 0.00% 28.40% 6.67% 0.00% 31 760 99 0 37 305 42 0 0.00% 1945 PEAK HR VOL 99 184 127 0 0.634 0.702 0.657 0.000 1 760 99 0 37 305 42 0 0.000 0.833 PEAK HR VOL 99 184 127 0 1 0.55													•					
8:85 AM 10 22 12 0 7 24 1 0 2 95 9 0 11 36 12 0 241 TOTAL VOLUMES: NL NL NT NR NU SL ST SR SU EL ET ER EU WL WT WR WU 2241 TOTAL VOLUMES: 147 S263 107 0 64.94% 67.94% 0 3.31% 86.23% 10.4% 0.0% 0.75% 0.0% 11.32% 497.967 0.0 24.497 67.78% 0.0% 24.97% 67.78% 0.0% 24.97% 67.78% 0.0% 24.97% 24.97% 26.37% 10.4% 0.0% 0.64% 0.0% 0.78% 0.000 0.841 0.79% 0.5% 0.000 0.841 0.87% 0.000 0.841 0.897 0.75% 0.000 0.831 0.78% 0.000 0.841 0.897 0.75% 0.000 0.831 0.841 0.811 0 2.91 0.5 0.5% 0 1 </td <td></td>																		
NUM NL NL NL NL NL NL SR SR SU EL ET ER EU WL WT WR WU TOTAL APPROACH %'s : 23.63% 46.30% 30.06% 0.00% 28.40% 64.94% 6.57% 0.00% 44 114.6 133 0.00% 11.32% 497 67 0.00% 28.40% 64.94% 6.57% 0.00% 83.31% 86.23% 10.46% 0.00% 11.32% 497 67 0 10714 10714 16 0 3.11% 86.23% 0.00% 0.841 0.037 0.53% 0.00% 1.945 0.786 0.010 0.841 0.831 0.63 0.798 0.074 0 1 0.715 0.000 0.841 0.786 0.010 0.841 0.831 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841 0.841		-							•	-		-	· ·	-			-	
TOTAL VOLUMES: 147 288 187 0 115 263 27 0 44 1146 139 0 72 497 67 0 0 2992 PPRACH %2: 23.63% 46.30% 30.06% 64.34% 66.7% 0.00% 3.31% 0.00% 11.32% 78.14% 10.53% 0.00 77.1 <	8:45 AM	10	22	12	U		24	1	U	2	95	9	U	11	30	12	U	241
APPROACH %'s 23.63% 46.30% 30.06% 0.00% 64.94% 6.67% 0.00% 3.31% 86.23% 10.46% 0.00% 11.32% 78.14% 10.53% 0.00% PEAK HR 0011 9 164 127 0 71 174 16 0 0.667 0.000 0.666 0.763 0.763 0.780 0.000 0.841 0.897 0.750 0.000 0.833 PEAK HR FACTOR 0.784 0.780 0.6164 0.763 0.780 0.000 0.841 0.897 0.750 0.000 0.833 PIM 1 2 0 0 1 0.754 0.000 0.667 0.000 0.646 0.763 0.788 0.000 0.841 0.897 0.750 0.833 PIM 1 2 1 0 5 0.000 16.87 SU EL ET ER EU WL WT WR WU TOTAL 4:00 PM									SU				EU					TOTAL
PEAK HR: 07:15 AM - 08:15 AM 99 71 71 74 16 0 31 760 99 0 37 305 42 0 1945 PEAK HR FACTOR: 0.844 0.754 0.000 0.645 0.702 0.667 0.000 0.764 0.786 0.000 0.841 0.897 0.750 0.000 0.833 PEAK HR FACTOR: NORTHBOUND 5000 1 0.575 0 1 2 0 0 1 1 1 0 0.937 0.750 0.000 0.833 PM 1 2 1 0 1 0.55 0 1 2 0 0 1 1 1 0 0.361 4:00 PM 13 36 14 0 11 45 8 0 4 98 11 0 21 84 16 0 361 4:30 PM 15 465 23 0 13 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2992</td></td<>																		2992
PEAK HR VOL: 99 184 127 0 71 174 16 0 31 760 99 0 37 305 42 0 1945 PEAK HR FACTOR: 0.884 0.780 0.648 0.000 0.724 0.667 0.000 0.667 0.000 0.780 0.000 0.891 0.897 0.91 0.897 0.91 0.893 0.91 0.893 0.91 0.893 0.91 0.893 0.91 0.893 0.91 0.897 0.91 0.897 0.91 0.897 0.91 0.897 0.91 0.897 0.91 0.897 0.91 0.897 0.91 0.897 0.91 0.833 PM 1 2 1 0 SUTHBOUND SUTHBOUND EASTBOUND EASTBOUND WESTBOUND WESTBOUND WU TOTAL 4:00 PM 13 36 14 0 11 45 8 0 31 104 10 0 25 100					0.00%	28.40%	64.94%	6.67%	0.00%	3.31%	86.23%	10.46%	0.00%	11.32%	78.14%	10.53%	0.00%	
PEAK HR FACTOR: 0.884 0.780 0.648 0.000 0.634 0.702 0.667 0.000 0.676 0.798 0.000 0.841 0.897 0.750 0.000 0.833 PM 0.754 0.754 0.754 0.754 0.761 0.786 0.798 0.000 0.841 0.897 0.750 0.000 0.833 PM 1 2 1 0 1 0.55 0.57 0 1 2 0 1 1 1 1 1 1 1 1 1 0 11 45 8 0 4 98 11 0 21 84 16 0 361 4:15 PM 11 30 15 0 5 40 3 0 4 98 11 0 22 10 361 33 36 4 0 31 36 389 364 100 21 103 8 378<									_									
PM 0.754 0.754 0.754 0.914 0.914 0.914 0.914 PM 1 2 1 0 1 0.5 0.5 0 1 2 0 0 1 1 1 1 1 1 0 1 0.55 0.5 0 1 2 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3 0 3 104 10 0 21 84 16 0 361 3 0 3 104 10 0 21 84 15 0 389 36 0 389 36 361 35 36 </td <td></td> <td>1945</td>																		1945
PM NORTHBOUND SOUTHBOUND EASTBOUND WESTBOUND WESTBOUND 1 2 1 0 5 0.5 0 1 2 0 1 1 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 3 104 10 0 21 84 16 0 356 4 3 0 3 104 10 0 21 103 8 0 358 358 358 358 3538 3 3 2 0 4 99 8 0 11 0	PEAK HR FACTOR :	0.884			0.000	0.634			0.000	0.646			0.000	0.841			0.000	0.833
PM 1 2 1 0 1 0.5 0.5 0 1 2 0 0 1 1 1 1 1 1 0 TOTAL 4:00 PM 13 36 14 0 ST SR SU EL ET ER EU WL WT WR WU 361 4:15 PM 11 30 15 0 5 40 3 0 3 104 10 0 25 102 8 0 356 4:30 PM 15 46 23 0 11 45 2 0 4 105 9 0 19 102 7 0 389 5:00 PM 21 49 9 0 9 57 2 0 5 94 7 0 22 107 16 0 382 5:30 PM 17 41 11 0			0.7	J4			0.7	†1			0.70	50			0.91	4		
NL NT NR NU SL ST SR SU EL ET ER EU WL WT WR WU TOTAL 4:10 PM 13 36 14 0 11 45 8 0 4 98 11 0 21 84 16 0 356 4:15 PM 11 30 15 0 5 40 3 0 3 104 10 0 25 102 8 0 356 4:30 PM 16 46 23 0 11 45 2 0 4 105 9 0 19 102 7 0 398 5:00 PM 21 49 9 0 9 57 2 0 5 94 7 0 22 107 16 0 398 5:30 PM 17 41 11 0 8 37 2 <td></td>																		
4:00 PM 13 36 14 0 11 45 8 0 4 98 11 0 21 84 16 0 361 4:15 PM 11 30 15 0 5 40 3 0 3 104 10 0 25 102 8 0 361 4:30 PM 16 46 23 0 11 45 2 0 4 105 9 0 19 102 7 0 389 4:45 PM 15 48 23 0 13 52 4 0 7 90 14 0 21 103 8 0 398 5:00 PM 21 49 9 0 9 57 2 0 5 94 7 0 22 107 16 0 398 5:15 PM 13 40 13 0 11 47 3 0 9 88 0 12 83 19 320 320	PM																	
4:15 PM 11 30 15 0 5 40 3 0 3 104 10 0 25 102 8 0 356 4:30 PM 15 46 23 0 11 45 2 0 4 105 9 0 19 102 7 0 398 4:45 PM 15 48 23 0 13 52 4 0 7 0 398 5:00 PM 21 49 9 0 9 57 2 0 5 94 7 0 22 107 16 0 398 5:15 PM 13 40 13 0 11 47 2 0 4 99 8 0 15 95 8 0 345 5:35 PM 17 41 11 0 8 37 2 0 4 99 8 0 15 95 8 0 345 5:45 PM 5 8 0 <																		
4:30 PM 16 46 23 0 11 45 2 0 4 105 9 0 19 102 7 0 389 4:45 PM 15 48 23 0 13 52 4 0 7 90 14 0 21 103 8 0 398 5:00 PM 21 49 9 0 9 57 2 0 5 94 7 0 22 107 16 0 398 5:15 PM 13 40 13 0 11 47 3 0 9 889 8 0 21 117 11 0 382 5:35 PM 15 78 9 10 5 54 3 0 5 78 8 0 12 83 19 0 326 5:45 PM 5 39 19 0 5 54 3 6 77 83 19 0 101 320 320 320																		
4:45 PM 15 48 23 0 13 52 4 0 7 90 14 0 21 103 8 0 398 5:00 PM 21 49 9 0 9 57 2 0 5 94 7 0 22 107 16 0 398 5:15 PM 13 40 13 0 11 47 3 0 9 89 8 0 22 107 16 0 382 5:30 PM 17 41 11 0 8 37 2 0 4 99 8 0 15 95 8 0 323 5:30 PM 5 39 19 0 5 44 3 0 5 78 8 0 12 83 19 0 320 TOTAL VOLMES: 111 329 127 0 73 367 27 0 410 757 75 0 156 793 93 0 <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td>													· ·					
5:00 PM 21 49 9 0 9 57 2 0 5 94 7 0 22 107 16 0 398 5:15 PM 13 40 13 0 11 47 3 0 9 89 8 0 21 117 11 0 382 5:30 PM 17 41 11 0 8 37 2 0 4 99 8 0 21 117 11 0 382 5:45 PM 5 39 19 0 5 44 3 0 5 78 8 0 12 83 19 0 320 TOTAL VOLUMES: 111 329 127 0 73 367 27 0 41 757 75 0 156 793 93 0 24 APPROACH %s: 19.58% 58.02% 22.40% 0.00% 78.59% 58.7% 8.67% 8.57% 8.59% 156 793 93 0 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>					-				-			-	-					
515 PM 13 40 13 0 11 47 3 0 9 89 8 0 21 117 11 0 382 5:30 PM 17 41 11 0 8 37 2 0 4 99 8 0 15 95 8 0 345 5:45 PM 5 39 19 0 5 44 3 0 5 78 8 0 12 83 19 0 345 TOTAL VOLUMES: 11 32 27 0 5 78 8 0 12 83 19 0 320 PTAL VOLUMES: 111 32 27 0 75 0 15 75 0 156 79 93 93 00 0 24 APPROACH %*: 19.58% 58.02% 22.40% 0.00% 15.63% 78.5% 5.78% 0.00% 4.70% 8.51% 0.00% 14.97% 76.10% 8.93% 0.00 0.00% 10.00%																		
5:30 PM 17 41 11 0 8 37 2 0 4 99 8 0 15 95 8 0 345 5:45 PM 5 39 19 0 5 44 3 0 45 978 8 0 15 95 8 0 345 TOTAL VOLUMES: NIL NT NR NU SL ST SR SU EL ET ER EU WL WT WR WU 2949 APPROACH %'s: 19.58% 58.02% 22.40% 0.00% 15.63% 78.59% 5.78% 0.00% 4.70% 8.57% 0.00% 14.97% 76.10% 8.39% 0.00% 2949 PEAK HR : 04:30 PM - 05:30 PM .5.39% 7.85% 5.78% 0.00% 4.70% 8.57% 0.00% 14.97% 76.10% 8.39% 0.00% 124 949 30.00% 14.97% 76.10% 8.39% 0.00% 10.00% 11 0 25 378 38 0 83 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td> <td></td>									•				· ·					
5:45 PM 5 39 19 0 5 44 3 0 5 78 8 0 12 83 19 0 320 TOTAL VOLUMES: 111 329 127 0 SL ST SR SU EL ET ER EU WL WT WR WU TOTAL ApproAct My's: 19:5% 58:02% 22.40% 0.00% 16:3% 75.7% 0 15.6 79.3 93 0 249 PEAK HR VOL: 65 183 68 0 44 21 1 0 25 37.8% 8.59% 0.00% 14.9% 75.7% 0.00% 14.9% 75.0% 0.00% 14.9% 76.10% 8.9% 0.00% 0.00% 0.00% 16.7% 8.59% 0.00% 14.9% 76.10% 8.9% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>•</td><td>-</td><td></td><td>-</td><td>ő</td><td></td><td></td><td></td><td></td><td></td></td<>					-				•	-		-	ő					
TOTAL VOLUMES: 111 329 127 0 73 367 27 0 41 757 75 0 156 793 93 0.0 2949 APPROACH %'s: 19.58% 58.02% 22.40% 0.00% 15.63% 78.59% 5.78% 0.00% 4.70% 86.71% 8.59% 0.00% 14.97% 76.10% 8.93% 0.00% 1 1 0 2 7 0.00% 14.97% 75.10% 8.59% 0.00% 14.97% 76.10% 8.93% 0.00% 1 1 0 1 0 2 3 8 0 8.59% 0.00% 14.97% 76.10% 8.93% 0.00% 1 1 0 2 3 8 0 8.34 429 42 0 156																		
TOTAL VOLUMES: 111 329 127 0 73 367 27 0 41 757 75 0 156 793 93 0.0 2949 APPROACH %'s: 19.58% 58.02% 22.40% 0.00% 15.63% 78.59% 5.78% 0.00% 4.70% 86.71% 8.59% 0.00% 14.97% 76.10% 8.93% 0.00% 1 1 0 2 7 0.00% 14.97% 75.10% 8.59% 0.00% 14.97% 76.10% 8.93% 0.00% 1 1 0 1 0 2 3 8 0 8.59% 0.00% 14.97% 76.10% 8.93% 0.00% 1 1 0 2 3 8 0 8.34 429 42 0 156		NI	NT	ND	NUT	CI	CT	CD	CLL	C1	CT	ED	EU	14/1	MT	WD.	14/11	TOTAL
APPROACH %'s: 19.58% 58.02% 22.40% 0.00% 15.63% 78.59% 5.78% 0.00% 4.70% 8.59% 0.00% 14.97% 76.10% 8.93% 0.00% PEAK HR: 04:30 PM - 05:30 PM 5.30 PM 5.78% 0.00% 4.70% 8.59% 0.00% 14.97% 76.10% 8.93% 0.00% PEAK HR ACTOR: 65 183 68 0 44 201 11 0 25 378 38 0 83 429 42 0 156% PEAK HR ACTOR: 0.774 0.934 0.739 0.000 0.846 0.882 0.688 0.000 0.679 0.000 0.943 0.917 0.556 0.000 0.986	TOTAL VOLUMES																	
PEAK HR: 04:30 PM - 05:30 PM TOTAL PEAK HR VOL: 65 183 68 0 44 201 11 0 25 378 38 0 83 429 42 0 1567 PEAK HR ACTOR: 0.774 0.934 0.739 0.000 0.646 0.694 0.900 0.679 0.000 0.943 0.917 0.656 0.000 0.000																		2349
PEAK HR VOL: 65 183 68 0 44 201 11 0 25 378 38 0 83 429 42 0 1567 PEAK HR FACTOR: 0.774 0.934 0.739 0.000 0.846 0.882 0.688 0.000 0.679 0.000 0.943 0.917 0.656 0.000 0.994					0.0070	13.03%	,0.3970	5.70 %	0.00%	T.7070	30.7170	0.3970	0.00%	17.37 /0	,0.10/0	0.9570	0.00%	TOTAL
PEAK HR FACTOR: 0.774 0.934 0.739 0.000 0.846 0.882 0.688 0.000 0.694 0.900 0.679 0.000 0.943 0.917 0.656 0.000					0	44	201	11	0	25	378	38	0	83	429	42	0	
					5.000	0.0.0			5.000	0.001			5.000	515 15			5.000	0.984

Location: 35th St & Avenue J-8 City: Lancaster Control: 4-Way Stop (NB/SB/EB/WB)

Project ID: 18-05266-002 Date: 4/26/2018

Control:	4-Way Stop	(NB/SB/E	B/WB)											Date: 4	4/26/2018		
-								То	tal								ı
NS/EW Streets:		35th	n St			35th	St			Avenue	e J-8			Avenue	e J-8		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
AM	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	2	12	0	0	15	3	3	0	6	46	2	0	0	45	17	0	151
7:15 AM	1	7	0	0	55	7	19	0	6	58	2	0	1	66	24	0	246
7:30 AM	6	1	1	0	65	12	27	0	4	82	6	0	3	75	11	0	293
7:45 AM	9	4	2	0	64	18	15	0	3	106	15	0	4	61	6	0	307
8:00 AM	4	4	0	0	16	2	3	0	2	66	7	0	2	43	9	0	158
8:15 AM	1	1	2	0	11	4	2	0	2	68	3	0	2	26	2	0	124
8:30 AM	3	0	0	0	8	2	2	0	2	41	0	0	0	43	2	0	103
8:45 AM	4	2	3	0	12	2	4	0	1	42	1	0	0	26	5	0	102
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	30	31	8	0	246	50	75	0	26	509	36	0	12	385	76	0	1484
APPROACH %'s :	43.48%	44.93%	11.59%	0.00%	66.31%	13.48%	20.22%	0.00%	4.55%	89.14%	6.30%	0.00%	2.54%	81.40%	16.07%	0.00%	
PEAK HR :)7:15 AM -															TOTAL
PEAK HR VOL :	20	16	3	0	200	39	64	0	15	312	30	0	10	245	50	0	1004
PEAK HR FACTOR :	0.556	0.571	0.375	0.000	0.769	0.542	0.593	0.000	0.625	0.736	0.500	0.000	0.625	0.817	0.521	0.000	0.818
		0.6	50			0.72	28			0.72	20			0.83	38		0.010
		NORTH	BOUND			SOUTH				EASTB				WESTB		1	
PM	1	1	1	0	1	1	0	0	1	1	0	0	1	1	0	0	
1 101	ŇĹ	NT	NR	NU	SL	ST	SR	SU	ĒL	ĒT	ER	EU	ŴL	ŴT	WR	WU	TOTAL
4:00 PM	0	2	0	0	6	3	4	0	3	59	1	0	2	89	6	0	175
4:15 PM	ō	5	2	0	9	1	2	ō	3	51	3	Ō	2	90	18	ō	186
4:30 PM	5	4	1	0	7	4	6	0	0	36	1	0	1	67	14	0	146
4:45 PM	4	2	1	0	12	5	4	0	1	43	3	0	1	79	9	0	164
5:00 PM	3	2	1	0	5	2	8	0	5	39	3	0	1	79	10	0	158
5:15 PM	0	4	2	0	10	2	4	0	6	47	3	0	1	96	4	0	179
5:30 PM	3	3	1	0	7	1	0	0	5	52	0	0	0	85	9	0	166
5:45 PM	3	3	10	0	10	3	3	0	4	51	6	0	0	78	10	0	181
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	18	25	18	0	66	21	31	0	27	378	20	0	8	663	80	0	1355
APPROACH %'s :	29.51%	40.98%	29.51%	0.00%	55.93%	17.80%	26.27%	0.00%	6.35%	88.94%	4.71%	0.00%	1.07%	88.28%	10.65%	0.00%	
PEAK HR :		05:00 PM -															TOTAL
PEAK HR VOL :	9	12	14	0	32	8	15	0	20	189	12	0	2	338	33	0	684
PEAK HR FACTOR :	0.750	0.750	0.350	0.000	0.800	0.667	0.469	0.000	0.833	0.909	0.500	0.000	0.500	0.880	0.825	0.000	0.945
		0.5				0.85				0.90				0.92			

Location: 32nd St/Campus Dwy & Avenue K City: Lancaster Control: Signalized

Project ID: 18-05266-003 Date: 4/26/2018

Control:	Signalized							_						Date: 4	4/26/2018		
_								To	tal								
NS/EW Streets:	:	32nd St/Ca	mpus Dwy		3	2nd St/Car	npus Dwy			Avenu	ie K			Avenu	ie K		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
AM	1	1	0	0	1	0.5	0.5	0	1	3	0	0	1	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	9	9	6	0	6	0	3	0	8	95	3	1	4	96	5	0	245
7:15 AM	7	7	7	0	8	1	4	0	12	161	3	2	0	114	19	0	345
7:30 AM	19	4	17	0	29	1	7	0	30	231	8	0	5	121	65	0	537
7:45 AM	6	7	11	0	61	2	8	0	60	309	5	2	4	103	101	0	679
8:00 AM	6	2	13	0	18	1	4	0	25	222	5	1	2	86	38	0	423
8:15 AM	0	1	7	0	9	0	0	0	4	185	2	0	1	58	16	0	283
8:30 AM	2	1	6	0	2	1	0	0	4	132	0	0	3	64	12	0	227
8:45 AM	0	1	3	0	15	1	3	0	4	130	0	0	8	50	24	0	239
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTA
TOTAL VOLUMES :	49	32	70	0	148	7	29	0	147	1465	26	6	27	692	280	0	2978
APPROACH %'s :	32.45%	21.19%	46.36%	0.00%	80.43%	3.80%	15.76%	0.00%	8.94%	89.11%	1.58%	0.36%	2.70%	69.27%	28.03%	0.00%	
PEAK HR :)7:15 AM -															TOTAL
PEAK HR VOL :	38	20	48	0	116	5	23	0	127	923	21	5	11	424	223	0	1984
PEAK HR FACTOR :	0.500	0.714	0.706	0.000	0.475	0.625	0.719	0.000	0.529	0.747	0.656	0.625	0.550	0.876	0.552	0.000	0.730
		0.6	63			0.50)7			0.71	15			0.79	91		01/00
		NORTH				SOUTH				EASTB				WESTB		1	
PM	1	1	0	0	1	0.5	0.5	0	1	3	0	0	1	3	0	0	
F IVI	ŇĹ	NT	NR	NU	SL	ST	SR	SU	ĒL	ET	ER	EU	ŴL	ŴТ	WR	wu	ΤΟΤΑΙ
4:00 PM	0	2	5	0	24	1	3	0	4	129	2	0	6	145	10	1	332
4:15 PM	2	1	9	0	16	1	8	ō	6	123	4	Ō	9	134	28	1	342
4:30 PM	2	2	6	0	35	2	7	0	8	144	0	4	6	141	17	0	374
4:45 PM	1	1	9	0	24	0	5	0	4	129	1	13	9	163	14	2	375
5:00 PM	1	0	11	0	28	0	11	0	26	143	2	4	6	191	17	0	440
5:15 PM	1	0	4	0	17	2	0	0	2	141	2	1	8	153	10	0	341
5:30 PM	3	1	5	0	12	1	2	0	4	131	6	1	8	150	11	1	336
5:45 PM	1	2	5	0	22	1	6	0	12	111	5	2	14	136	29	1	347
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTA
TOTAL VOLUMES :	11	9	54	0	178	8	42	0	66	1051	22	25	66	1213	136	6	2887
APPROACH %'s :	14.86%	12.16%	72.97%	0.00%	78.07%	3.51%	18.42%	0.00%	5.67%	90.29%	1.89%	2.15%	4.64%	85.36%	9.57%	0.42%	
PEAK HR :	()4:15 PM -															TOTA
PEAK HR VOL :	6	4	35	0	103	3	31	0	44	539	7	21	30	629	76	3	1531
PEAK HR FACTOR :	0.750	0.500	0.795	0.000	0.736	0.375	0.705	0.000	0.423	0.936	0.438	0.404	0.833	0.823	0.679	0.375	0.870
PEAK HK FACTOR :		0.9								0.87				0.86			

Location: 30th St & Avenue J City: Lancaster Control: Signalized

Project ID: 18-05266-004 Date: 4/26/2018

Control:	Signalized													Date: 4	4/26/2018		
-								To	tal								
NS/EW Streets:		30th	n St			30th	St			Aven	ue J			Avenu	ue J		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTB	OUND		
AM	1	3	0	0	1	3	0	0	1	3	0	0	1	2	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	56	72	13	0	13	63	28	0	10	141	44	0	20	120	12	0	592
7:15 AM	59	59	24	0	12	102	27	0	34	213	65	0	36	177	10	0	818
7:30 AM	32	74	40	0	14	150	33	0	22	233	65	0	61	82	5	0	811
7:45 AM	14	80	50	0	15	126	16	0	40	246	37	0	65	109	6	0	804
8:00 AM	9	72	49	0	16	100	7	0	24	134	13	0	48	55	9	0	536
8:15 AM	5	58	28	0	3	40	13	0	11	130	20	0	28	67	5	0	408
8:30 AM	11	47 37	28 33	0	4	71 41	7 15	0	10	92 113	18	0	27	64	5 3	1	385 402
8:45 AM	15	37	33	0	5	41	15	0	16	113	24	U	30	70	3	0	402
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	201	499	265	0	82	693	146	0	167	1302	286	0	315	744	55	1	4756
APPROACH %'s :	20.83%	51.71%	27.46%	0.00%	8.90%	75.24%	15.85%	0.00%	9.52%	74.19%	16.30%	0.00%	28.25%	66.73%	4.93%	0.09%	
PEAK HR :		07:00 AM -															TOTAL
PEAK HR VOL :	161	285	127	0	54	441	104	0	106	833	211	0	182	488	33	0	3025
PEAK HR FACTOR :	0.682	0.891	0.635	0.000	0.900	0.735	0.788	0.000	0.663	0.847	0.812	0.000	0.700	0.689	0.688	0.000	0.925
		0.9	01			0.70	00			0.0	90			0.76	00		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTB	OUND		
PM	1	3	0	0	1	3	0	0	1	3	0	0	1	2	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	12	61	39	0	6	72	26	0	23	107	17	0	47	127	7	0	544
4:15 PM	15	84	36	0	4	81	27	0	21	95	18	0	62	122	8	0	573
4:30 PM	8	75 78	39	0	5	80	21	0	20	104	24	0	52	123	1	0	552
4:45 PM 5:00 PM	29 13	68	40 30	0	5	83 65	36 37	0	23 16	116 94	16 10	0	46 73	122 149	10 8	0	604 567
5:00 PM 5:15 PM	12	69	30 44	0	3	68	32	0	10	100	10	0	63	149	12	0	599
5:30 PM	17	59	45	0	3	64	29	0	28	122	20	0	38	133	6	1	565
5:45 PM	36	67	37	ő	6	72	23	ő	13	105	24	0	60	133	7	ō	592
			-		-				-			-					
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	142	561	310	0	36	585	232	0	163	843	142	0	441	1081	59	1	4596
APPROACH %'s :	14.02%	55.38%	30.60%	0.00%	4.22%	68.58%	27.20%	0.00%	14.20%	73.43%	12.37%	0.00%	27.88%	68.33%	3.73%	0.06%	TOTAL
PEAK HR :		04:45 PM -	05:45 PM	0	15	200	174	0	00	422	50	0	220	500	26		TOTAL
PEAK HR VOL : PEAK HR FACTOR :	71 0.612	274 0.878	159 0.883	0 0.000	15 0.750	280 0.843	134 0.905	0 0.000	86 0.768	432 0.885	59 0.738	0 0.000	220 0.753	568 0.866	36 0.750	1 0.250	2335
PEAK HK FACTOR :	0.012	0.878		0.000	0.750	0.843		0.000	0.700	0.885		0.000	0.755	0.866		0.250	0.966
		0.0	57			0.00	0.5			0.0	7.7			0.00	5		

Location: 30th St & Avenue J-8 City: Lancaster Control: Signalized

Project ID: 18-05266-005 Date: 4/26/2018

Control:	Signalized													Date: 4	4/26/2018		
-								To	tal								
NS/EW Streets:		30th	n St			30th	St			Avenu	e J-8			Avenu	e J-8		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	1	3	0	0	1	3	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	18	122	9	0	34	90	6	0	8	69	15	0	15	69	25	0	480
7:15 AM	27	115	24	0	45	170	19	0	10	110	33	0	33	94	18	0	698
7:30 AM	20	99	41	0	37	184	42	0	22	134	27	0	40	98	12	0	756
7:45 AM	23	113	32	0	31	199	45	0	22	133	26	0	44	122	10	0	800
8:00 AM	15	98	26	0	25	127	18	0	10	80	12	0	36	66	9	0	522
8:15 AM	12	77	24	0	17	77	7	0	10	80	21	0	21	42	3	0	391
8:30 AM	17	71 67	15 9	0 0	19	84	11	0	5 8	55 65	12 16	0	25 22	41	4	0 0	359
8:45 AM	6	67	9	0	18	78	12	1	8	65	16	U	22	31	10	0	343
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	138	762	180	0	226	1009	160	1	95	726	162	0	236	563	91	0	4349
APPROACH %'s :	12.78%	70.56%	16.67%	0.00%	16.19%	72.28%	11.46%	0.07%	9.66%	73.86%	16.48%	0.00%	26.52%	63.26%	10.22%	0.00%	
PEAK HR :		07:15 AM -															TOTAL
PEAK HR VOL :	85	425	123	0	138	680	124	0	64	457	98	0	153	380	49	0	2776
PEAK HR FACTOR :	0.787	0.924	0.750	0.000	0.767	0.854	0.689	0.000	0.727	0.853	0.742	0.000	0.869	0.779	0.681	0.000	0.868
		0.9	42			0.8	50			0.84	40			0.82	2/		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	OUND	1	
PM	1	3	0	0	1	3	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	20	97	22	0	8	108	17	0	16	69	13	0	32	97	14	0	513
4:15 PM	17	91	21	0	15	113	14	0	15	68	25	0	42	112	18	0	551
4:30 PM	29	97	28	0	18	100	13	0	27	57	14	0	30	86	13	0	512
4:45 PM	20	104	34	0	9	137	15	0	14	69	18	0	47	106	14	0	587
5:00 PM	32 17	126 109	24	0	8 14	134	11 13	0	17 19	45 60	18 21	0	38 46	106 111	15	0	574
5:15 PM 5:30 PM	19	109	28 23	0	14	123 110	13	0	19	62	19	0	40 34	96	22 17	0	583 529
5:30 PM 5:45 PM	26	82	23	0	19	110	21	0	18	76	19	0	24	101	17	0	529 548
5.45 FM	20	02		0	10	119			10		1/	-	24			U	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	180	808	208	0	109	944	116	0	142	506	145	0	293	815	131	0	4397
APPROACH %'s :	15.05%	67.56%	17.39%	0.00%	9.32%	80.75%	9.92%	0.00%	17.91%	63.81%	18.28%	0.00%	23.65%	65.78%	10.57%	0.00%	
PEAK HR :			05:45 PM														TOTAL
PEAK HR VOL :	88	441	109	0	50	504	51	0	66	236	76	0	165	419	68	0	2273
PEAK HR FACTOR :	0.688	0.875	0.801	0.000	0.658	0.920	0.850	0.000	0.868	0.855	0.905	0.000	0.878	0.944	0.773	0.000	0.968
		0.8	/6			0.93	39			0.9	50			0.93	11		

Location: 30th St & Avenue 3-12/New Dwy City: Lancaster Control: 2-Way Stop (EB/WB)

Project ID: 18-05266-006 Date: 4/26/2018

								To	tal								
NS/EW Streets:		30th	St			30th	St		A	venue J-12	/New Dwy		А	venue J-12	/New Dwy		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	0	3	0	0	1	2	0	0	0	1	0	0	0	1	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	161	2	0	2	121	2	0	0	0	1	0	6	0	3	0	298
7:15 AM	0	187	1	0	0	214	13	0	0	0	2	0	2	0	1	0	420
7:30 AM 7:45 AM	0	193 237	5 4	0	4 8	175 153	32 36	0 3	0	0	3 12	0	2	0	6 5	0 0	420 463
8:00 AM	1	154	5	0	2	125	30 8	3 0	1	0	2	0	2	0	3	0	303
8:15 AM	0	104	3	0	1	125	3	0	0	0	2	0	2	0	1	0	221
8:30 AM	0	114	2	ő	4	94	5	1	0	0	1	0	2	0	1	0 0	221
8:45 AM	ő	100	3	ŏ	o	93	1	ō	ő	ŏ	1	ő	ō	ő	i	ŏ	199
0.15 AH	°.	100	5	°.	v		-	•	U U	°.	-	•	· ·	°.	-	° .	155
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	1	1250	25	0	21	1081	100	4	1	0	24	0	20	0	21	0	2548
APPROACH %'s :	0.08%	97.96%	1.96%	0.00%	1.74%	89.64%	8.29%	0.33%	4.00%	0.00%	96.00%	0.00%	48.78%	0.00%	51.22%	0.00%	
PEAK HR :	(07:15 AM -	08:15 AM														TOTAL
PEAK HR VOL :	1	771	15	0	14	667	89	3	1	0	19	0	11	0	15	0	1606
PEAK HR FACTOR :	0.250	0.813	0.750	0.000	0.438	0.779	0.618	0.250	0.250	0.000	0.396	0.000	0.550	0.000	0.625	0.000	0.867
		0.8	16			0.85	51			0.43	17			0.65	50		0.007
D14	_	NORTH		_		SOUTH		_		EASTB		_		WESTE			
PM	0	3	0	0	1	2 ST	0	0	0	1	0	0	0	1	0	0	TOTAL
4:00 PM	NL 0	NT 126	NR	NU	SL 5	164	SR 6	SU	EL	ET 0	ER 16	EU	WL	WT 0	WR	WU	TOTAL 319
4:00 PM 4:15 PM	0	126	0 4	0	3	164	3	0 0	0	0	16	0	0	0	2 5	0 0	319
4:30 PM	ő	135	- 7	ő	7	142	2	1	0	0	12	0	1	0	3	0 0	310
4:45 PM	0	165	3	ő	3	176	15	0	0	0	15	0	0	0	1	ŏ	378
5:00 PM	Ő	154	6	Ő	5	166	11	0	1	Ö	19	0	2	0	4	0	368
5:15 PM	ŏ	177	9	ŏ	5	162	6	ŏ	ō	ŏ	14	ŏ	2	ŏ	6	ŏ	381
5:30 PM	0	142	0	0	8	144	0	1	0	0	7	0	6	0	2	0	310
										Ó	10	0	2			Ó	
5:45 PM	ŏ	140	2	0	2	150	6	0	0	0	10	U	2	0	0	U	312
5:45 PM	0	140						°.	, in the second s	Ŭ		•		Č.	, in the second se		
	0 NL	140 NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0 NL 0	140 NT 1168	NR 25	NU 0	SL 38	ST 1280	SR 49	SU 2	EL 1	ET 0	ER 111	EU 0	WL 15	WT 0	WR 23	WU 0	
TOTAL VOLUMES : APPROACH %'s :	0 NL 0 0.00%	140 NT 1168 97.90%	NR 25 2.10%	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL 2712
TOTAL VOLUMES : APPROACH %'s : PEAK HR :	0 NL 0 0.00%	140 NT 1168 97.90% 04:30 PM -	NR 25 2.10% 05:30 PM	NU 0 0.00%	SL 38 2.78%	ST 1280 93.50%	SR 49 3.58%	SU 2 0.15%	EL 1 0.89%	ET 0 0.00%	ER 111 99.11%	EU 0 0.00%	WL 15 39.47%	WT 0 0.00%	WR 23 60.53%	WU 0 0.00%	TOTAL 2712 TOTAL
TOTAL VOLUMES : APPROACH %'s : PEAK HR : PEAK HR VOL :	0 NL 0 0.00% 0	140 NT 1168 97.90% 04:30 PM - 631	NR 25 2.10% 05:30 PM 19	NU 0 0.00%	SL 38 2.78% 20	ST 1280 93.50% 646	SR 49 3.58% 34	SU 2 0.15%	EL 1 0.89%	ET 0 0.00%	ER 111 99.11%	EU 0 0.00%	WL 15 39.47%	WT 0 0.00%	WR 23 60.53% 14	WU 0 0.00%	TOTAL 2712
TOTAL VOLUMES : APPROACH %'s : PEAK HR :	0 NL 0 0.00%	140 NT 1168 97.90% 04:30 PM -	NR 25 2.10% 05:30 PM 19 0.528	NU 0 0.00%	SL 38 2.78%	ST 1280 93.50%	SR 49 3.58% 34 0.567	SU 2 0.15%	EL 1 0.89%	ET 0 0.00%	ER 111 99.11% 66 0.868	EU 0 0.00%	WL 15 39.47%	WT 0 0.00%	WR 23 60.53% 14 0.583	WU 0 0.00%	TOTAL 2712 TOTAL

Location: 30th St & Avenue K City: Lancaster Control: Signalized

Project ID: 18-05266-007 Date: 4/26/2018

Control:	Signalized													Date: 4	4/26/2018		
-								To	tal								
NS/EW Streets:		30th	n St			30th	St			Avenu	Je K			Avenu	ie K		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	OUND		
AM	2	3	0	0	2	3	0	0	2	3	0	0	2	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	28	132	25	0	14	75	15	0	9	92	14	0	6	86	33	0	529
7:15 AM	31	158	31	0	27	149	24	0	16	135	23	0	18	114	53	0	779
7:30 AM	74	183	45	0	51	109	52	0	33	148	47	0	9	104	53	0	908
7:45 AM	85	216	34	0	38	76	35	0	45	254	53	0	15	161	109	0	1121
8:00 AM	68	109	44	0	38	71	34	0	42	205	53	0	15	97	45	0	821
8:15 AM	34	82	27	0	21	62	29	0	28	145	53	0	14	76	27	0	598
8:30 AM 8:45 AM	24 25	66 90	21 29	0	25 23	59 74	13 13	0 0	31 9	134 115	36 16	0	16 18	63 69	26 26	0 0	514 507
8:45 AM	25	90	29	U	23	74	13	U	9	115	16	U	18	69	26	U	507
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	369	1036	256	0	237	675	215	0	213	1228	295	0	111	770	372	0	5777
APPROACH %'s :	22.22%	62.37%	15.41%	0.00%	21.03%	59.89%	19.08%	0.00%	12.27%	70.74%	16.99%	0.00%	8.86%	61.45%	29.69%	0.00%	
PEAK HR :		07:15 AM -															TOTAL
PEAK HR VOL :	258	666	154	0	154	405	145	0	136	742	176	0	57	476	260	0	3629
PEAK HR FACTOR :	0.759	0.771	0.856	0.000	0.755	0.680	0.697	0.000	0.756	0.730 0.74	0.830	0.000	0.792	0.739	0.596	0.000	0.809
		0.0	04			0.0.	30			0.7	77			0.0	70		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	OUND		
PM	2	3	0	0	2	3	0	0	2	3	0	0	2	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	31	100	34	0	60	111	20	0	15	141	36	0	27	121	31	0	727
4:15 PM	31	100	25	0	39	142	32	0	20	103	30	0	33	136	22	0	713
4:30 PM	33	94	38	0	53	99	20	0	23	142	40	0	28	119	37	0	726
4:45 PM	42	122	21	0	44	121	34	0	16	112	39	0	26	132	50	0	759
5:00 PM 5:15 PM	43 23	98 133	34 31	0	73 44	142 133	29 22	0	34 23	124 128	47 33	0	26 27	133 125	46 36	0	829 758
5:30 PM	23 33	105	24	0	53	135	22	0	25 16	120	31	0	27	125	30	0	698
5:45 PM	32	103	29	0	26	121	33	0	16	87	29	0	20	126	48	0	669
5.45 PP	-															-	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	268	855	227	0	392	983	218	0	163	959	285	0	221	1007	301	0	5879
APPROACH %'s :	19.85%	63.33%	16.81%	0.00%	24.61%	61.71%	13.68%	0.00%	11.58%	68.16%	20.26%	0.00%	14.45%	65.86%	19.69%	0.00%	TOTO
PEAK HR :			05:30 PM			105				500				500			TOTAL
PEAK HR VOL :	141	447	124	0	214	495	105	0	96	506	159	0	107	509	169	0	3072
PEAK HR FACTOR :	0.820	0.840	0.816	0.000	0.733	0.871	0.772	0.000	0.706	0.891	0.846	0.000	0.955	0.957	0.845	0.000	0.926
		0.9	52			0.8	54			0.9	20			0.94	14		

Location: 30th St & Avenue K-8 City: Lancaster Control: Signalized

Project ID: 18-05266-008 Date: 4/26/2018

Control:	Signalized													Date: 4	4/26/2018		
-								То	tal								
NS/EW Streets:		30th	n St			30th	St			Avenue	e K-8			Avenue	e K-8		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	OUND		
AM	1	3	0	0	1	3	0	0	1	1	1	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	3	113	16	0	8	93	11	0	25	12	6	0	14	22	27	0	350
7:15 AM	3	171	14	0	26	155	15	0	22	32	9	0	26	27	41	0	541
7:30 AM	8	223	24	0	24	122	12	0	28	50	5	0	24	25	26	0	571
7:45 AM	4	250	23	0	31	125	13	0	26	52	10	0	19	15	34	0	602
8:00 AM	3	161 109	18 18	0	14	113	10	0	16 11	34	9 7	0	14 9	18 14	24 10	0	434
8:15 AM 8:30 AM	3	109	18	0	20 16	101 88	10 17	0	9	18 23	10	0	9 13	14 14	9	0 0	330 320
8:45 AM	0	110	18	0	10	90	8	0	13	25 37	5	0	15	20	13	0	343
0.45 AM	0	110	10	0	11	50	0	0	15	37	5	U	10	20	15	U	545
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	28	1238	147	0	150	887	96	0	150	258	61	0	137	155	184	0	3491
APPROACH %'s :	1.98%	87.62%	10.40%	0.00%	13.24%	78.29%	8.47%	0.00%	31.98%	55.01%	13.01%	0.00%	28.78%	32.56%	38.66%	0.00%	
PEAK HR :		07:15 AM -						_									TOTA
PEAK HR VOL :	18	805	79	0	95	515 0.831	50 0.833	0	92	168 0.808	33	0	83	85 0.787	125 0.762	0	2148
PEAK HR FACTOR :	0.563	0.805 0.8	0.823	0.000	0.766	0.831		0.000	0.821	0.808	0.825	0.000	0.798	0.787		0.000	0.892
		0.0	14			0.0	12			0.0.	52			0.77			
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	OUND		
PM	1	3	0	0	1	3	0	0	1	1	1	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	6	138	26	0	9	145	14	0	16	24	6	0	33	40	18	0	475
4:15 PM	9	123	28	0	17	157	21	0	12	18	6	0	25	39	21	0	476
4:30 PM	7	151	19	0	16	135	25	0	12	18	9	0	24	30	21	0	467
4:45 PM	9	143	29	0	12	132	16	0	14	17	11	0	31	49	25	0	488
5:00 PM 5:15 PM	20 17	152 154	32 28	0	20 15	208 131	19 19	0	11 19	27 27	8 12	0	20 29	42 49	28 16	0	587 516
5:30 PM	7	134	26	0	15	131	23	0	19	13	12	0	32	36	16	0	474
5:45 PM	12	119	15	0	10	121	14	0	13	19	10	0	25	21	10	0	390
5.15111									-							-	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTA
TOTAL VOLUMES :	87	1115	203	0	111	1170	151	0	115	163	77	0	219	306	156	0	3873
APPROACH %'s :	6.19%	79.36%	14.45%	0.00%	7.75%	81.70%	10.54%	0.00%	32.39%	45.92%	21.69%	0.00%	32.16%	44.93%	22.91%	0.00%	
PEAK HR :			05:45 PM														TOTA
PEAK HR VOL :	53	584	115	0	59	612	77	0	62	84	46	0	112	176	85	0	2065
PEAK HR FACTOR :	0.663	0.948	0.898	0.000	0.738	0.736	0.837	0.000	0.816	0.778	0.767	0.000	0.875	0.898	0.759	0.000	0.879
		0.9	22			0.75	0/			0.8	28			0.88	58		

Location: 25th St & Avenue J City: Lancaster Control: Signalized

Project ID: 18-05266-009 Date: 4/26/2018

Control:	Signalized													Date: 4	4/26/2018		
-								To	tal								
NS/EW Streets:		25th	St			25th	St			Avenu	ue J			Avenu	ue J		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
AM	1	1	1	0	1	1	1	0	1	3	0	0	1	3	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	12	21	16	0	2	24	29	0	21	140	16	0	11	146	4	1	443
7:15 AM	18	38	27	0	7	28	20	0	29	194	19	0	17	168	4	1	570
7:30 AM	10	35	27	0	6	35	15	0	46	241	38	0	18	147	3	0	621
7:45 AM	6	34	26	0	5	32	50	0	52	250	31	0	25	204	9	0	724
8:00 AM	12	36	28	0	2	26	54	0	65	203	30	0	18	141	5	3	623
8:15 AM	2	44	18	0	6	29	14	0	32	145	21	0	21	95	5	2	434
8:30 AM 8:45 AM	3	31 37	22 16	0	3 7	17 31	13 9	0 0	27 20	114 125	17 7	0	15 25	94 91	9 6	0 1	365 378
8:45 AM	3	37	16	U		31	9	U	20	125	/	U	25	91	D	1	378
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	66	276	180	0	38	222	204	0	292	1412	179	0	150	1086	45	8	4158
APPROACH %'s :	12.64%	52.87%	34.48%	0.00%	8.19%	47.84%	43.97%	0.00%	15.51%	74.99%	9.51%	0.00%	11.64%	84.25%	3.49%	0.62%	TOTAL
PEAK HR : PEAK HR VOL :	46	07:15 AM - 143	108	0	20	121	139	0	192	888	118	0	78	660	21		TOTAL 2538
PEAK HR VOL : PEAK HR FACTOR :	46 0.639	0.941	0.964	0.000	20	0.864	0.644	0.000	0.738	0.888	0.776	0 0.000	78 0.780	0.809	0.583	4 0.333	2538
PEAK HR FACTOR :	0.639	0.941		0.000	0.714	0.804		0.000	0.756	0.800		0.000	0.760	0.809		0.555	0.876
		0.0	55			0.0	05			0.0.	,,,			0.00	/1		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
PM	1	1	1	0	1	1	1	0	1	3	0	0	1	3	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	8	45	25	0	5	24	26	0	33	129	11	0	39	176	14	1	536
4:15 PM	4	43	23	0	5	44	28	0	36	112	11	0	36	175	9	2	528
4:30 PM	4	47	23	0	4	36	22	0	38	113	12	0	36	176	19	4	534
4:45 PM	6	58	19	0	8 7	29	13	0	33	100	11	0	61	203	12	1	554
5:00 PM 5:15 PM	5	54 63	17 23	0	10	28 49	15 25	0	29 37	121 123	10 15	0	46 42	196 190	13 17	2 2	544 603
5:30 PM	8	43	29	0	9	32	23	0	40	113	15	1	41	171	13	0	535
5:45 PM	5	38	29	0	6	29	16	0	50	122	12	0	40	202	16	1	566
5.15111					v							-				-	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	48	391	188	0	54	271	169	0	296	933	93	1	341	1489	113	13	4400
APPROACH %'s :	7.66%	62.36%	29.98%	0.00%	10.93%	54.86%	34.21%	0.00%	22.37%	70.52%	7.03%	0.08%	17.43%	76.12%	5.78%	0.66%	TOTAL
PEAK HR :		05:00 PM -														-	TOTAL
PEAK HR VOL :	26	198	98	0	32	138	80	0	156	479	48	1	169	759	59	5	2248
PEAK HR FACTOR :	0.813	0.786	0.845	0.000	0.800	0.704	0.800	0.000	0.780	0.974	0.800	0.250	0.918	0.939	0.868	0.625	0.932
		0.8	00			0.74	44			0.92	29			0.95	00		

Location: 25th St & Avenue J-8 City: Lancaster Control: Signalized

Project ID: 18-05266-010 Date: 4/26/2018

Control:	Signalized													Date: 4	4/26/2018		
-								To	tal								
NS/EW Streets:		25th	n St			25th	St			Avenue	e J-8			Avenu	e J-8		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	1	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	21	23	8	0	35	24	8	0	5	111	8	0	3	94	12	0	352
7:15 AM	20	42	23	0	45	29	3	0	7	178	7	0	3	125	21	0	503
7:30 AM	18	37	40	0	71	34	3	0	10	194	15	0	5	141	20	0	588
7:45 AM	23	40	23	0	53	51	7	0	6	204	14	0	5	168	9	0	603
8:00 AM	17	33	10	0	56	49	5	0	11	152	17	0	7	121	25	0	503
8:15 AM	7	35	20	0	44	36	3	0	4	139	4	0	5	59	17	0	373
8:30 AM	5	32 31	16 10	0	25	29 29	3	0	5	85	5	0	9	72 56	21 13	0	307 297
8:45 AM	4	31	10	0	42	29	3	U	3	94	3	U	9	50	13	0	297
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	115	273	150	0	371	281	35	0	51	1157	73	0	46	836	138	0	3526
APPROACH %'s :	21.38%	50.74%	27.88%	0.00%	54.00%	40.90%	5.09%	0.00%	3.98%	90.32%	5.70%	0.00%	4.51%	81.96%	13.53%	0.00%	
PEAK HR :		07:15 AM -															TOTAL
PEAK HR VOL :	78	152	96	0	225	163	18	0	34	728	53	0	20	555	75	0	2197
PEAK HR FACTOR :	0.848	0.905	0.600	0.000	0.792	0.799 0.91	0.643	0.000	0.773	0.892 0.91	0.779	0.000	0.714	0.826	0.750	0.000	0.911
		0.0	30			0.9	14			0.91	10			0.0	73		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
PM	1	2	0	0	1	2	0	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	6	33	7	0	37	44	5	0	7	87	8	0	15	154	35	0	438
4:15 PM	12	44	22	0	39	42	8	0	11	102	7	0	12	158	35	0	492
4:30 PM	6	40	10	0	28	60	9	0	7 8	94	3	0	19 9	139	32	0	447
4:45 PM 5:00 PM	9	45 50	6 11	0	32 32	50 52	10 8	0	3	94 79	3	0	9 10	158 168	37 30	0	467 451
5:15 PM	5	50 46	11	0	32	52 64	5	0	3 7	79 97	2	0	10	100	30 47	0	509
5:30 PM	7	40	8	0	41	46	3	0	7	93	8	0	16	175	41	0	467
5:45 PM	9	39	8	ŏ	29	37	7	ŏ	ģ	112	3	ő	14	131	25	ŏ	423
51.51.11						-	· ·					, in the second				-	-
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	59	337	83	0	277	395	55	0	59	758	43	0	106	1240	282	0	3694
APPROACH %'s :	12.32%	70.35%	17.33%	0.00%	38.10%	54.33%	7.57%	0.00%	6.86%	88.14%	5.00%	0.00%	6.51%	76.17%	17.32%	0.00%	TOTAL
PEAK HR :		04:45 PM -	05:45 PM	0		212	26	•	25	262	22	0	40	650	155	0	TOTAL
PEAK HR VOL :	26 0.722	181 0.905	36 0.818	0 0.000	144 0.878	212 0.828	26 0.650	0 0.000	25 0.781	363 0.936	22 0.611	0 0.000	46 0.719	658 0.940	155 0.824	0 0.000	1894
PEAK HR FACTOR :	0.722	0.905		0.000	0.6/8	0.828		0.000	0.781	0.936		0.000	0.719	0.940		0.000	0.930
		0.9	20			0.00	т			0.92				0.92	-2		

Location: 25th St & Avenue K City: Lancaster Control: Signalized

Project ID: 18-05266-011 Date: 4/26/2018

Control:	Signalized												$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
-								To	tal								
NS/EW Streets:		25th	n St			25th	St			Avenu	ie K			Avenu	ie K		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
AM	1	2	0	0	1	1	1	0	1	2	0	0	1	2	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	6	22	6	0	12	13	4	0	6	124	3	0		99	16	0	316
7:15 AM	0	23	5	0	11	14	15	0	13	182	2	0					443
7:30 AM	5	34	18	0	27	35	7	0	14	230	5	0					587
7:45 AM	4	38	18	0	20	32	16	0	21	319	8	0					745
8:00 AM	1	38	25	0	42	26	5	0	9	257	12	0					581
8:15 AM	2	20	19	0	27	18	5	0	16	201	4	0					438
8:30 AM 8:45 AM	1	18 21	24 20	0 0	20 20	17 14	6 5	0 0	13 8	178 166	4 8	0					421 392
8:45 AM	1	21	20	U	20	14	5	U	8	166	8	U	8	111	10	U	392
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU					TOTAL
TOTAL VOLUMES :	20	214	135	0	179	169	63	0	100	1657	46	0					3923
APPROACH %'s :	5.42%	57.99%	36.59%	0.00%	43.55%	41.12%	15.33%	0.00%	5.55%	91.90%	2.55%	0.00%	4.48%	87.91%	7.61%	0.00%	TOTAL
PEAK HR : PEAK HR VOL :	10	07:15 AM - 133	66	0	100	107	43	0	57	988	27	0	77	755	42	0	2356
PEAK HR FACTOR :	0.500	0.875	0.660	0.000	0.595	0.764	45	0.000	0.679	966 0.774	0.563	0.000					
PEAK IIK FACTOR :	0.300	0.875		0.000	0.395	0.704		0.000	0.079	0.77		0.000	0.075			0.000	0.791
		0.0	10			0.0.	50			0.77	•			0.70		1	
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTB	OUND		
PM	1	2	0	0	1	1	1	0	1	2	0	0					
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU					TOTAL
4:00 PM	3	28	16	0	22	39	9	0	11	211	4	0					552
4:15 PM	3	25	8	0	14	28	12	0	10	176	3	0					517
4:30 PM	6	26	11	0	11	39	16	0	17	215	3	0					524
4:45 PM	4	23	7	0	22	35	10	0	7	182	2	0					546
5:00 PM	4	33 30	7	0	13	35 27	11 14	0	10 10	204 197	6 6	0					553 555
5:15 PM 5:30 PM	5	18	15 5	0	28 18	38	6	0	7	197	12	0				-	555 492
5:45 PM	4	24	5	0	10	20	17	0	8	140	5	0					467
5.45 00	-			v	1/			v	0		5	-	15			v	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU			WR	WU	TOTAL
TOTAL VOLUMES :	36	207	74	0	145	261	95	0	80	1503	41	0	86	1518	159	1	4206
APPROACH %'s :	11.36%	65.30%	23.34%	0.00%	28.94%	52.10%	18.96%	0.00%	4.93%	92.55%	2.52%	0.00%	4.88%	86.05%	9.01%	0.06%	TOTA
PEAK HR :			05:30 PM				-			-							TOTA
PEAK HR VOL :	21	112	40	0	74	136	51	0	44	798	17	0	40	775	70	0	2178
PEAK HR FACTOR :	0.750	0.848	0.667	0.000	0.661	0.872	0.797	0.000	0.647	0.928	0.708	0.000	0.769	0.881	0.795	0.000	0.981
		0.8	32			0.94	40			0.91	.4			0.87	1		

Location: SR-14 SB Off Ramp & Avenue J City: Lancaster Control: Signalized

Project ID: 18-05266-012 Date: 4/26/2018

Control:	Signalized								_					Date: 4	4/26/2018		
_								То	tal								
NS/EW Streets:		SR-14 SB	Off Ramp			SR-14 SB (Off Ramp			Aveni	ue J			Aveni	ue J		
		NORTH	HBOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	0	0	0	0	1	0	1	0	0	3	0	0	0	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	21	0	18	0	0	150	0	0	0	166	0	0	355
7:15 AM	0	0	0	0	35	0	40	0	0	245	0	0	0	154	0	0	474
7:30 AM	0	0	0	0	46	0	44	0	0	249	0	0	0	177	0	0	516
7:45 AM	0	0	0	0	56	0	37	0	0	334	0	0	0	213	0	0	640
8:00 AM	0	0	0	0	35	0	33	0	0	236	0	0	0	163	0	0	467
8:15 AM 8:30 AM	0	0	0	0	43 47	0	26 23	0 0	0	226 175	0	0	0	141 178	0	0	436 423
8:45 AM	0	0	0	0	47	0	25 30	0	0	175	0	0	0	1/8	0	0	423
0:45 AM	U	U	U	U	40	U	30	U	U	100	U	U	U	109	U	U	431
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	329	0	251	0	0	1801	0	0	0	1361	0	0	3742
APPROACH %'s :					56.72%	0.00%	43.28%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	
PEAK HR :			- 08:15 AM														TOTAL
PEAK HR VOL :	0	0	0	0	172	0	154	0	0	1064	0	0	0	707	0	0	2097
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.768	0.000	0.875	0.000	0.000	0.796	0.000	0.000	0.000	0.830	0.000	0.000	0.819
						0.8	/6			0.79	16			0.83	30		
		NORTH	HBOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
PM	0	0	0	0	1	0	1	0	0	3	0	0	0	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	0	0	0	0	47	0	52	0	0	244	0	0	0	235	0	0	578
4:15 PM	0	0	0	0	50	0	38	0	0	225	0	0	0	242	0	0	555
4:30 PM	0	0	0	0	37	0	66	0	0	219	0	0	0	260	0	0	582
4:45 PM 5:00 PM	0	0	0	0	44 33	0	74 66	0	0	197 234	0	0	0	240 269	0	0	555 602
5:00 PM 5:15 PM	0	0	0	0	33	0	53	0	0	234	0	0	0	269 293	0	0	602
5:30 PM	0	0	0	0 0	40	0 0	40	0	0	229	0	0	0	261	0	0	570
5:45 PM	0	0	0	0	40	0	48	0	0	229	0	0	0	249	0	0	563
5.15111												-		-		-	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	328	0	437	0	0	1807	0	0	0	2049	0	0	4621
APPROACH %'s :					42.88%	0.00%	57.12%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	
PEAK HR :			- 05:30 PM														TOTAL
PEAK HR VOL :	0	0	0	0	151	0	259	0	0	883	0	0	0	1062	0	0	2355
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.858	0.000	0.875	0.000	0.000	0.943	0.000	0.000	0.000	0.906	0.000	0.000	0.956
						0.8	59			0.94	13			0.90	J6		

Location: 20th St & SR-14 NB Off Ramp City: Lancaster Control: Signalized

Project ID: 18-05266-015 Date: 4/26/2018

Control: S	Signalized								-					Date.	4/26/2018		
-								Tot	tal								
NS/EW Streets:		20th	St			20th	St			SR-14 NB	Off Ramp			SR-14 NB 0	Off Ramp		
		NORTH	BOUND			SOUTHE	30UND			EAST	BOUND			WESTB	OUND		
AM	0	3	0	0	0	3	0	0	0	0	0	0	1	0	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	48	0	0	0	79	0	0	0	0	0	0	26	0	75	0	228
7:15 AM	0	52	0	0	0	70	0	0	0	0	0	0	43	0	90	0	255
7:30 AM	0	73	0	0	0	102	0	0	0	0	0	0	105	0	138	0	418
7:45 AM	0	94	0	0	0	123	0	0	0	0	0	0	103	0	180	0	500
8:00 AM	0	102	0	0	0	106	0	0	0	0	0	0	43	0	143	0	394
8:15 AM	0	112	0	0	0	137	0	0	0	0	0	0	34	0	117	0	400
8:30 AM	0	116	0	0	0	128	0	0	0	0	0	0	35	0	102	0	381
8:45 AM	0	116	0	0	0	121	0	0	0	0	0	0	42	0	128	0	407
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	713	0	0	0	866	0	0	0	0	0	0	431	0	973	0	2983
APPROACH %'s :	0.00%	100.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%				-	30.70%	0.00%	69.30%	0.00%	
PEAK HR :		07:30 AM -	08:30 AM														TOTAL
PEAK HR VOL :	0	381	0	0	0	468	0	0	0	0	0	0	285	0	578	0	1712
PEAK HR FACTOR :	0.000	0.850	0.000	0.000	0.000	0.854	0.000	0.000	0.000	0.000	0.000	0.000	0.679	0.000	0.803	0.000	0.856
		0.8	50			0.85	64							0.76	52		0.850
		NORTH				SOUTHE				EAST	BOUND			WESTB			
PM	0	3	0	0	0	3	0	0	0	0	0	0	1	0	1	0	
r ivi	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	ŴL	wт	ŴR	wu	TOTAL
4:00 PM	0	137	0	0	0	186	0	0								0	531
4:15 PM	ŏ	132							0		0	0	81	0	127		
4:30 PM			0	0	Ó				0	0	0	0	81 100	0	127 145		556
	0	128	0	0	0	179 213	0	0					81 100 102	0 0 0	127 145 111	0	556 554
4:45 PM	0					179	0	0	ō	0	ō	Ō	100	ō	145	0	
	-	128	0	0	ō	179 213	0 0	0 0	0	0	0	0	100 102	0	145 111	0 0	554
4:45 PM	0	128 112	0	0 0	0	179 213 196	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	100 102 113	0 0 0	145 111 115	0 0 0	554 536
4:45 PM 5:00 PM	0	128 112 120	0 0 0	0 0 0	0 0 0	179 213 196 220	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	100 102 113 93	0 0 0 0	145 111 115 129	0 0 0 0	554 536 562
4:45 PM 5:00 PM 5:15 PM	0 0 0	128 112 120 117	0 0 0 0	0 0 0 0	0 0 0 0	179 213 196 220 217	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	100 102 113 93 115	0 0 0 0 0	145 111 115 129 130	0 0 0 0 0	554 536 562 579
4:45 PM 5:00 PM 5:15 PM 5:30 PM	0 0 0 0 0	128 112 120 117 119 107	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	179 213 196 220 217 240 193	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	100 102 113 93 115 103 78	0 0 0 0 0 0 0	145 111 115 129 130 113 101	0 0 0 0 0 0 0	554 536 562 579 575 479
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	0 0 0 0 0 NL	128 112 120 117 119 107 NT	0 0 0 0 0 0 0 NR	0 0 0 0 0 0	0 0 0 0 0 0 5L	179 213 196 220 217 240 193 ST	0 0 0 0 0 0 0 0 5R	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	100 102 113 93 115 103 78 WL	0 0 0 0 0 0 0 0 0 0 0 0	145 111 115 129 130 113 101 WR	0 0 0 0 0 0 0 0 0 0 0 0	554 536 562 579 575 479 TOTAL
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	0 0 0 0 0 0 NL 0	128 112 120 117 119 107 NT 972	0 0 0 0 0 0 0 NR 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 5L 0	179 213 196 220 217 240 193 ST 1644	0 0 0 0 0 0 0 SR 0	0 0 0 0 0 0 0 5 U 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	100 102 113 93 115 103 78 WL 785	0 0 0 0 0 0 0 0 0 0 0 0 0	145 111 115 129 130 113 101 WR 971	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	554 536 562 579 575 479 TOTAI
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM TOTAL VOLUMES : APPROACH %'s :	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	128 112 120 117 119 107 NT	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 5L 0	179 213 196 220 217 240 193 ST	0 0 0 0 0 0 0 0 5R	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	100 102 113 93 115 103 78 WL	0 0 0 0 0 0 0 0 0 0 0 0	145 111 115 129 130 113 101 WR	0 0 0 0 0 0 0 0 0 0 0 0	554 536 562 579 575 479 TOTAI 4372
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM TOTAL VOLUMES : APPROACH %'s : PEAK HR :	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	128 112 120 117 119 107 NT 972 100.00% 04:45 PM -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 SL 0 0.00%	179 213 196 220 217 240 193 ST 1644 100.00%	0 0 0 0 0 0 0 SR 0	0 0 0 0 0 0 0 5 U 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 ET 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	100 102 113 93 115 103 78 WL 785 44.70%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	145 111 115 129 130 113 101 WR 971 55.30%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	554 536 562 579 575 479 TOTAI 4372
4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM TOTAL VOLUMES : APPROACH %'s :	0 0 0 0 0 NL 0 0.00%	128 112 120 117 119 107 NT 972 100.00%	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 5L 0	179 213 196 220 217 240 193 ST 1644	0 0 0 0 0 0 0 5 8 0 0.00%	0 0 0 0 0 0 0 5 0 0 0.00%	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	100 102 113 93 115 103 78 WL 785	0 0 0 0 0 0 0 0 0 0 0 0 0	145 111 115 129 130 113 101 WR 971	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	554 536 562 579 575 479 TOTAL

Location: 20th St & Avenue J-8 City: Lancaster Control: Signalized

Project ID: 18-05266-016 Date: 4/26/2018

Control:	Signalized													Date: 4	1/26/2018		
-								To	tal								
NS/EW Streets:		20th	n St			20th	St			Avenu	e J-8			Avenu	e J-8		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	OUND		
AM	1	2	0	0	1	2	2	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	11	33	7	0	4	38	54	1	12	43	7	7	11	75	2	1	306
7:15 AM	17	33	23	0	8	36	75	1	17	88	14	7	16	113	3	0	451
7:30 AM	15	59	34	0	19	51	124	2	12	98	17	7	22	121	1	0	582
7:45 AM	11	69	43	0	23	44	148	1	17	144	25	10	24	118	6	1	684
8:00 AM	26 13	72	38	0	11	75 72	80 76	1	16 26	125 107	16 21	7	25 30	96	11	0	599 573
8:15 AM 8:30 AM	13	76 85	30 23	1	13 10	67	76 89	0	26	46	11	2	30 18	95 91	16	0	489
8:45 AM	10	84	23	1	9	76	69 71	0	17	40 60	12	3	30	65	13	0	489
0.45 AM	17	04	20	1	5	70	/1	0	17	00	12	5	30	05	15	v	400
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	126	511	226	2	97	459	717	7	128	711	123	48	176	774	63	2	4170
APPROACH %'s :	14.57%	59.08%	26.13%	0.23%	7.58%	35.86%	56.02%	0.55%	12.67%	70.40%	12.18%	4.75%	17.34%	76.26%	6.21%	0.20%	
PEAK HR :		07:30 AM -						_									TOTAL
PEAK HR VOL :	65	276	145	0	66	242 0.807	428 0.723	5	71	474 0.823	79	26	101	430	29	1	2438
PEAK HR FACTOR :	0.625	0.908	0.843	0.000	0.717	0.807		0.625	0.683	0.823	0.790	0.650	0.842	0.888 0.94	0.659	0.250	0.891
		0.0	55			0.0.	50			0.0	23			0.5	11		
		NORTH	BOUND			SOUTH	BOUND			EASTE	OUND			WESTE	OUND		
PM	1	2	0	0	1	2	2	0	1	2	0	0	1	2	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	38	105	23	1	25	97	170	0	8	50	16	6	38	141	22	0	740
4:15 PM	28	95	27	1	22	75	151	1	16	69	18	6	40	144	24	0	717
4:30 PM	22	100	38	1	25	115	185	1	11	47	16	8 4	37	136	14	0	756
4:45 PM 5:00 PM	31 38	89 94	25 21	0	17 19	96 107	181 196	0	14 9	68 45	20 11	4	39 28	154 157	7 13	0	745 741
5:15 PM	30	81	32	1	19	99	196	0	21	45 71	17	2	28 40	180	18	0	807
5:30 PM	29	86	31	0	17	119	188	1	21	45	12	6	25	134	17	0	732
5:45 PM	19	63	27	1	12	105	159	2	19	81	10	3	25	122	15	ŏ	663
	-			-													
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	235	713	224	5	155	813	1427	6	119	476	120	38	272	1168	130	0	5901
APPROACH %'s :	19.97%	60.58%	19.03%	0.42%	6.46%	33.86%	59.43%	0.25%	15.80%	63.21%	15.94%	5.05%	17.32%	74.39%	8.28%	0.00%	TOTAL
PEAK HR :		04:30 PM -		2	70	417	750	2		221	~	17		627	52	0	TOTAL
PEAK HR VOL : PEAK HR FACTOR :	121 0.796	364 0.910	116 0.763	2 0.500	78 0.780	417 0.907	759 0.963	2 0.500	55 0.655	231 0.813	64 0.800	17 0.531	144 0.900	627 0.871	52 0.722	0 0.000	3049
PEAK HK FACTOR :	0.796	0.910		0.500	0.780	0.907		0.500	0.055	0.813		0.531	0.900	0.871		0.000	0.945
		0.9	50			0.90	0.5			0.0	19			0.00	77		

Location: 20th St & Avenue K City: Lancaster Control: Signalized

Project ID: 18-05266-017 Date: 4/26/2018

Control:	Signalized													Date: 4	4/26/2018		
-								To	tal								
NS/EW Streets:		20th	n St			20th	St			Avenu	Je K			Avenu	Je K		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	2	2	0	0	2	2	0	0	1	3	1	0	1	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	5	19	12	0	17	22	12	0	6	106	6	1	6	107	7	0	326
7:15 AM	17	45	18	0	14	38	8	0	20	166	10	0	8	150	2	0	496
7:30 AM	16	61	23	0	20	30	27	0	21	225	10	6	10	202	6	0	657
7:45 AM	24	73	16	0	21	38	20	0	48	253	25	3	10	207	8	0	746
8:00 AM	10	57	27	0	28	41	13	0	38	244	24	2	29	166	18	0	697
8:15 AM	13	56	14	0	28	60	24	0	50	193	17	3	29	108	15	0	610
8:30 AM 8:45 AM	9 13	39 55	13 17	0	12 32	43 51	14 22	0	49 43	196 173	25 16	5	20 15	128 120	16 24	0 1	569 585
8:45 AM	13	55	17	U	32	51	22	U	43	1/3	16	3	15	120	24	1	585
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	107 16.41%	405 62.12%	140 21.47%	0 0.00%	172 27.09%	323 50.87%	140 22.05%	0 0.00%	275 13.84%	1556 78.31%	133 6.69%	23 1.16%	127 8.99%	1188 84.14%	96 6.80%	1 0.07%	4686
APPROACH %'s : PEAK HR :		62.12%		0.00%	27.09%	50.87%	22.05%	0.00%	13.84%	78.31%	6.69%	1.16%	8.99%	84.14%	6.80%	0.07%	TOTAL
PEAK HR : PEAK HR VOL :	63	247	80	0	97	169	84	0	157	915	76	14	78	683	47	0	2710
PEAK HR FACTOR :	0.656	0.846	0.741	0.000	0.866	0.704	0.778	0.000	0.785	0.904	0.760	0.583	0.672	0.825	0.653	0.000	
FLAK IIK FACTOR .	0.050	0.040		0.000	0.000	0.704		0.000	0.705	0.304		0.305	0.072	0.025		0.000	0.908
							*-										
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
PM	2	2	0	0	2	2	0	0	1	3	1	0	1	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	20	50	22	0	30	64	22	0	44	221	27	4	30	204	24	2	764
4:15 PM	25	66	21	0	44	68	23	0	29	181	11	5	33	184	19	1	710
4:30 PM	19	56	24	0	37	73	24	0	35	207	15	3	31	198	32	0	754
4:45 PM	29	63	21	0	51	76	26	0	40	175	12	5	41	170	23	1	733
5:00 PM	27 20	50 68	23 26	0	34 41	62	28 32	0	27 37	196 197	13 16	5 8	36 46	225 174	29 18	0	755
5:15 PM 5:30 PM	20	00 44	20 19	0	35	79 77	32 34	0	36	197	10	6	32	174	28	0	762 711
5:45 PM	13	52	20	0	37	78	19	0	38	150	12	3	35	177	20	0	658
5.45 PP	15	52		0	57				50		15		55			v	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	177	449	176	0	309	577	208	0	286	1520	121	39	284	1503	194	4	5847
APPROACH %'s :	22.07%	55.99%	21.95%	0.00%	28.24%	52.74%	19.01%	0.00%	14.55%	77.31%	6.15%	1.98%	14.31%	75.72%	9.77%	0.20%	
PEAK HR :			05:30 PM			200						24					TOTAL
PEAK HR VOL :	95	237	94	0	163	290	110	0	139	775	56	21	154	767	102	1	3004
PEAK HR FACTOR :	0.819	0.871 0.9	0.904	0.000	0.799	0.918 0.92	0.859	0.000	0.869	0.936 0.95	0.875	0.656	0.837	0.852 0.88	0.797	0.250	0.986
		0.9	JH PC			0.9.	20			0.95	33			0.80	55		

Location: 17th St & Avenue K City: Lancaster Control: Signalized

Project ID: 18-05266-018 Date: 4/26/2018

Control:	Signalized													Date: 4	4/26/2018		
-								To	tal								
NS/EW Streets:		17th	n St			17th	St			Avenu	Je K			Avenu	Je K		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	1	1	1	0	1	1	1	0	1	3	0	0	1	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	4	7	35	0	28	6	8	0	3	142	2	1	8	98	7	1	350
7:15 AM	11	7	29	0	44	5	9	0	12	170	3	0	14	147	14	0	465
7:30 AM	10	14	29	0	50	2	6	0	12	224	13	1	15	201	10	2	589
7:45 AM	15	12	40	0	34	5	6	0	16	273	15	0	15	231	16	2	680
8:00 AM	11	16	41	0	36	13	8	0	9	264	16	1	17	182	27	0	641
8:15 AM	8	5	37	0	31	8	11	0	11	180	14	0	23	153	19	1	501
8:30 AM 8:45 AM	3	13 10	35	0 0	29 34	9	4 10	0	12 5	223 180	14 8	0	24 34	157 167	16 15	0 3	539 512
8:45 AM	0	10	34	U	34	b	10	U	5	180	8	U	34	167	15	3	512
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	68	84	280	0	286	54	62	0	80	1656	85	3	150	1336	124	9	4277
APPROACH %'s :	15.74%	19.44%	64.81%	0.00%	71.14%	13.43%	15.42%	0.00%	4.39%	90.79%	4.66%	0.16%	9.26%	82.52%	7.66%	0.56%	TOTAL
PEAK HR : PEAK HR VOL :	44	0 7:30 AM - 47	08:30 AM 147	0	151	28	31	0	40	941	58	2	70	767	72	5	TOTAL 2411
PEAK HR VOL : PEAK HR FACTOR :	44 0.733	47 0.734	0.896	0.000	0.755	28	31 0.705	0.000	48 0.750	0.862	58 0.906	2 0.500	70 0.761	0.830	72 0.667	5 0.625	2411
PEAK HK FACTOR :	0.755	0.734		0.000	0.755	0.556		0.000	0.750	0.862		0.500	0.701	0.850		0.025	0.886
		0.0	/5			0.5	05			0.00	,,			0.00			
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
PM	1	1	1	0	1	1	1	0	1	3	0	0	1	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
4:00 PM	5	9	34	0	39	15	6	0	11	230	18	1	36	235	35	1	675
4:15 PM	5	13	33	0	45	13	8	0	16	224	18	3	22	231	33	0	664
4:30 PM	15	18	36	0	37	12	8	0	16	270	8	0	43	249	36	5	753
4:45 PM	5	6	27	0	48	10	9	0	8	216	20	4	25	231	31	4	644
5:00 PM 5:15 PM	11 13	18 17	36 33	0	52 41	11 10	13 8	0	7 12	221 258	15 19	1	30 31	260 234	38 33	7 8	720 719
5:30 PM	15	17	57	0	41	10	0 4	0	12	236	19	1	39	234	28	о 3	675
5:45 PM	8	5	41	0	25	9	11	0	8	193	21	3	38	213	30	4	624
5.45 111	0			v	25				U		21		50			-	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	77	103	297	0	327	97	67	0	88	1831	131	15	264	1881	264	32	5474
APPROACH %'s :	16.14%	21.59%	62.26%	0.00%	66.60%	19.76%	13.65%	0.00%	4.26%	88.67%	6.34%	0.73%	10.82%	77.06%	10.82%	1.31%	TOTA
PEAK HR :			05:30 PM				-					-					TOTA
PEAK HR VOL :	44	59	132	0	178	43	38	0	43	965	62	7	129	974	138	24	2836
PEAK HR FACTOR :	0.733	0.819	0.917	0.000	0.856	0.896	0.731	0.000	0.672	0.894	0.775	0.438	0.750	0.937 0.94	0.908	0.750	0.942
		0.8	21			0.8	52			0.91	10			0.94	14		

Location: SR-14 SB Ramps & Avenue K City: Lancaster Control: Signalized

Project ID: 18-05266-019 Date: 4/26/2018

Control:	Signalized	i												Date: 4	4/26/2018		
-								To	tal								
NS/EW Streets:		SR-14 S	B Ramps			SR-14 SB	Ramps			Avenu	ue K			Avenu	Je K		
		NORTH	HBOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	0	0	0	0	1	0.5	0.5	0	0	3	1	0	0	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	0	0	0	0	22	0	14	0	0	127	78	0	0	113	84	0	438
7:15 AM	0	0	0	0	32	0	24	0	0	147	87	0	0	167	66	0	523
7:30 AM	0	0	0	0	46	0	30	0	0	217	91	0	0	204	66	0	654
7:45 AM	0	0	0	0	84	0	47	0	0	257	99	0	0	226	77	0	790
8:00 AM	0	0	0	0	41	0	32	0	0	251	94	0	0	206	66	0	690
8:15 AM	0	0	0	0	39	0	40	0	0	198	54	0	0	160	70	0	561
8:30 AM	0	0	0	0	40	0	33	0	0	205	86	0	0	185	82	0	631
8:45 AM	0	0	0	0	53	0	27	0	0	192	66	0	0	205	91	0	634
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	0	0	0	0	357	0	247	0	0	1594	655	0	0	1466	602	0	4921
APPROACH %'s :					59.11%	0.00%	40.89%	0.00%	0.00%	70.88%	29.12%	0.00%	0.00%	70.89%	29.11%	0.00%	
PEAK HR :			- 08:30 AM														TOTAL
PEAK HR VOL :	0	0	0	0	210	0	149	0	0	923	338	0	0	796	279	0	2695
PEAK HR FACTOR :	0.000	0.000	0.000	0.000	0.625	0.000	0.793	0.000	0.000	0.898	0.854	0.000	0.000	0.881	0.906	0.000	0.853
						0.6	55			0.88	56			0.88	57		
		NORTH	HBOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
PM	0	0	0	0	1	0.5	0.5	0	0	3	1	0	0	3	0	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	ŴT	WR	WU	TOTAL
4:00 PM	0	0	0	0	55	0	36	0	0	206	99	0	0	303	118	0	817
4:15 PM	0	0	0	0	55	0	40	0	0	218	78	0	0	270	121	0	782
4:30 PM	0	0	0	0	59	0	50	0	0	243	100	0	0	267	133	0	852
4:45 PM	0	0	0	0	51	0	43	0	0	197	101	0	0	293	120	0	805
5:00 PM	0	0	0	0	63	0	59	0	0	225	82	0	0	294	149	0	872
5:15 PM	0	0	0	0	47	0	57	0	0	218	119	0	0	269	127	0	837
5:30 PM	0	0	0	0	41	0	44	0	0	212	106	0	0	255	113	0	771
5:45 PM	0	0	0	0	44	0	54	0	0	191	81	0	0	267	126	0	763
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES : APPROACH %'s :	0	0	0	0	415 52.01%	0 0.00%	383	0 0.00%	0 0.00%	1710 69.06%	766	0 0.00%	0 0.00%	2218 68.78%	1007 31.22%	0 0.00%	6499
PEAK HR :		04:30 PM	- 05:30 PM		52.01%	0.00%	47.99%	0.00%	0.00%	09.06%	30.94%	0.00%	0.00%	00.78%	51.22%	0.00%	TOTAL
	_			0	220	0	209	0	0	883	402	0	0	1123	529	0	3366
	0	0	0														
PEAK HR VOL : PEAK HR FACTOR :	0 0.000	0.000	0 0.000	0.000	0.873	0.000	0.886	0.000	0.000	0.908	0.845	0.000	0.000	0.955	0.888	0.000	0.965

Location: 15th St/SR-14 NB Ramps & Avenue K City: Lancaster Control: Signalized

Project ID: 18-05266-020 Date: 4/26/2018

	Signalized								_					Date: 4	4/26/2018		
-								To	tal								
NS/EW Streets:	15	th St/SR-1	4 NB Ramps	5	15	th St/SR-14	4 NB Ramp	s		Avenu	ie K			Avenu	Je K		
		NORTH	BOUND			SOUTH	BOUND			EASTB	OUND			WESTE	OUND		
AM	1	1	1	0	1.5	0.5	1	0	2	2.5	0.5	0	0	3	1	0	
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
7:00 AM	40	75	67	0	22	0	30	0	14	95	35	0	0	153	25	0	556
7:15 AM	66	106	69	0	26	0	26	0	26	135	23	0	0	178	18	0	673
7:30 AM	77	134	52	0	38	1	49	0	55	166	24	0	0	178	26	0	800
7:45 AM	95	116	103	0	44	2	47	0	88	233	28	0	0	185	59	0	1000
8:00 AM 8:15 AM	87	129 96	82 70	0	48 48	2	47 50	0	52 42	205 184	17 24	0	0	156 186	42 35	0	867 771
8:15 AM 8:30 AM	36 57	96 108	100	0	48 53	3	50 63	0	42 35	184	24 25	0	0	186	35 44	0	844
8:45 AM	57 71	108	87	0	50	3 1	70	0	55 54	173	25	0	0	105	50	0	860
0.45 AM	/1	101	07	U	50	1	70	U	54	1/4	20	U	U	1/4	50	U	800
	NL	NT	NR	NU	SL	ST	SR	SU	EL	ET	ER	EU	WL	WT	WR	WU	TOTAL
TOTAL VOLUMES :	529	865	630	0	329	9	382	0	366	1365	204	0	0	1393	299	0	6371
APPROACH %'s :	26.14%	42.74%	31.13%	0.00%	45.69%	1.25%	53.06%	0.00%	18.91%	70.54%	10.54%	0.00%	0.00%	82.33%	17.67%	0.00%	
PEAK HR :)7:45 AM -															TOTAL
PEAK HR VOL :	275	449	355	0	193	7	207	0	217	795	94	0	0	710	180	0	3482
PEAK HR FACTOR :	0.724	0.870	0.862	0.000	0.910	0.583	0.821	0.000	0.616	0.853	0.839	0.000	0.000	0.954	0.763	0.000	0.871
		0.8	59			0.8	55			0.79	92			0.93	12		
		NORTH	BOUND			SOUTH	BOUND			EASTB				WESTE		1	
PM																	
	1	1	1	0	1.5	0.5	1	0	2			0	0	3		0	
1 1 1 1	1 NL			0 NU	1.5 SL	0.5 ST	1 SR	0 SU	2 EL	2.5 ET	0.5 ER	0 EU	0 WL		1 WR	0 WU	TOTAL
4:00 PM		1	1							2.5	0.5			3	1		TOTAL 1053
4:00 PM 4:15 PM	NL	1 NT 79 96	1 NR 92 99	NU	SL 78 82	ST 4 4	SR 116 116	SU	EL 40 47	2.5 ET 186 203	0.5 ER	EU	WL	3 WT 291 233	1 WR 58 52	WU	1053 1041
4:00 PM 4:15 PM 4:30 PM	NL 88	1 NT 79 96 108	1 NR 92	NU 0 0 0	SL 78 82 85	ST 4 4 5	SR 116 116 109	SU 0	EL 40	2.5 ET 186	0.5 ER 21 30 21	EU	WL 0	3 WT 291 233 242	1 WR 58 52 55	WU 0	1053 1041 1068
4:00 PM 4:15 PM 4:30 PM 4:45 PM	NL 88 79 80 89	1 NT 79 96 108 90	1 NR 92 99 83 110	NU 0 0 0	SL 78 82 85 90	ST 4 4 5 5	SR 116 116 109 99	<u>SU</u> 0 0 0 0	EL 40 47 46 26	2.5 ET 186 203 234 199	0.5 ER 21 30 21 21 21	EU 0 0 0 0	WL 0 0 0 0	3 WT 291 233 242 269	1 WR 58 52 55 46	WU 0 0 0	1053 1041 1068 1044
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM	NL 88 79 80 89 93	1 NT 79 96 108 90 97	1 NR 92 99 83 110 94	NU 0 0 0 0 0	SL 78 82 85 90 87	ST 4 4 5 5 5 8	SR 116 116 109 99 138	SU 0 0 0 0 0	EL 40 47 46 26 30	2.5 ET 186 203 234 199 234	0.5 ER 21 30 21 21 21 25	EU 0 0 0 0 0	WL 0 0 0 0 0	3 WT 291 233 242 269 258	1 WR 58 52 55 46 57	WU 0 0 0 0	1053 1041 1068 1044 1121
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	NL 88 79 80 89 93 68	1 NT 96 108 90 97 95	1 NR 92 99 83 110 94 86	NU 0 0 0 0 0 0	SL 78 82 85 90 87 89	ST 4 4 5 5	SR 116 116 109 99 138 123	SU 0 0 0 0 0 0 0	EL 40 47 46 26 30 39	2.5 ET 186 203 234 199 234 206	0.5 ER 21 30 21 21 21 25 23	EU 0 0 0 0 0 0 0	WL 0 0 0 0 0 0	3 WT 291 233 242 269 258 258	1 WR 58 52 55 46 57 46	WU 0 0 0 0 0 0	1053 1041 1068 1044 1121 1034
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	NL 88 79 80 89 93 68 72	1 NT 79 96 108 90 97 95 77	1 NR 92 99 83 110 94 86 92	NU 0 0 0 0 0 0 0	SL 78 82 85 90 87 89 85	ST 4 5 5 8 1 1	SR 116 109 99 138 123 95	SU 0 0 0 0 0 0 0 0	EL 40 47 46 26 30 39 38	2.5 ET 186 203 234 199 234 206 183	0.5 ER 21 30 21 21 25 23 26	EU 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0	3 WT 291 233 242 269 258 258 258 258 236	1 WR 58 52 55 46 57 46 57	WU 0 0 0 0 0 0 0	1053 1041 1068 1044 1121 1034 962
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM	NL 88 79 80 89 93 68	1 NT 96 108 90 97 95	1 NR 92 99 83 110 94 86	NU 0 0 0 0 0 0	SL 78 82 85 90 87 89	ST 4 4 5 5 5 8	SR 116 116 109 99 138 123	SU 0 0 0 0 0 0 0	EL 40 47 46 26 30 39	2.5 ET 186 203 234 199 234 206	0.5 ER 21 30 21 21 21 25 23	EU 0 0 0 0 0 0 0	WL 0 0 0 0 0 0	3 WT 291 233 242 269 258 258	1 WR 58 52 55 46 57 46	WU 0 0 0 0 0 0	1053 1041 1068 1044 1121 1034
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:30 PM 5:45 PM	NL 88 79 80 89 93 68 72 78 NL	1 NT 79 96 108 90 97 95 77 77 77 NT	1 NR 92 99 83 110 94 86 92 88 NR	NU 0 0 0 0 0 0 0 0 0 0 0 0	SL 78 82 85 90 87 89 85 57 SL	ST 4 5 5 8 1 1 2 ST	SR 116 116 109 99 138 123 95 102 SR	SU 0 0 0 0 0 0 0 0 0 5U	EL 40 47 46 26 30 39 38 41 EL	2.5 ET 186 203 234 199 234 206 183 183 ET	0.5 ER 21 30 21 21 25 23 26 19 ER	EU 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0	3 WT 291 233 242 269 258 258 236 255 WT	1 WR 58 52 55 46 57 46 57 50 WR	WU 0 0 0 0 0 0 0	1053 1041 1068 1044 1121 1034 962 952 TOTAL
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:15 PM 5:30 PM 5:30 PM 5:45 PM	NL 88 79 80 89 93 68 72 78 NL 647	1 NT 79 96 108 90 97 95 77 77 77 NT 719	1 NR 92 99 83 110 94 86 92 88 88 NR 744	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 78 82 85 90 87 89 85 57 57 SL 653	ST 4 4 5 5 8 1 1 2 ST 30	SR 116 116 109 99 138 123 95 102 SR 898	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 40 47 46 26 30 39 38 41 EL 307	2.5 ET 186 203 234 199 234 206 183 183 ET 1628	0.5 ER 21 30 21 25 23 26 19 ER 186	EU 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 WT 291 233 242 269 258 258 258 258 236 255 WT 2042	1 WR 58 52 55 46 57 46 57 46 57 50 WR 421	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1053 1041 1068 1044 1121 1034 962 952
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:35 PM 5:45 PM TOTAL VOLUMES : APPROACH %'s :	NL 88 79 80 89 93 68 72 78 NL 647 30.66%	1 NT 79 96 108 90 97 95 77 77 77 NT 719 34.08%	1 NR 92 99 83 110 94 86 92 88 88 NR 744 35.26%	NU 0 0 0 0 0 0 0 0 0 0 0 0	SL 78 82 85 90 87 89 85 57 SL	ST 4 5 5 8 1 1 2 ST	SR 116 116 109 99 138 123 95 102 SR	SU 0 0 0 0 0 0 0 0 0 5U	EL 40 47 46 26 30 39 38 41 EL	2.5 ET 186 203 234 199 234 206 183 183 ET	0.5 ER 21 30 21 21 25 23 26 19 ER	EU 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 WT 291 233 242 269 258 258 236 255 WT	1 WR 58 52 55 46 57 46 57 50 WR	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1053 1041 1068 1044 1121 1034 962 952 TOTAL 8275
4:00 PM 4:15 PM 4:30 PM 4:35 PM 5:00 PM 5:15 PM 5:30 PM 5:35 PM 5:45 PM TOTAL VOLUMES : APPROACH %'s : PEAK HR :	NL 88 79 80 89 93 68 72 78 NL 647 30.66%	1 NT 79 96 108 90 97 95 77 77 77 NT 719 34.08% 04:15 PM -	1 NR 92 99 83 110 94 86 92 88 NR 744 35.26% 05:15 PM	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 78 82 90 87 89 85 57 SL 653 41.30%	ST 4 5 5 8 1 1 2 ST 30 1.90%	SR 116 116 109 99 138 123 95 102 SR 898 56.80%	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 40 47 46 26 30 39 38 41 EL 307 14.47%	2.5 ET 186 203 234 199 234 206 183 183 ET 1628 76.76%	0.5 ER 21 30 21 21 25 23 26 19 ER 186 8.77%	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 WT 291 233 242 269 258 258 258 236 255 WT 2042 82.91%	1 WR 58 52 55 46 57 46 57 50 WR 421 17.09%	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1053 1041 1068 1044 1121 1034 962 952 TOTAL 8275 TOTAL
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:30 PM 5:45 PM TOTAL VOLUMES : APPROACH %'s : PEAK HR VOL :	NL 88 79 80 89 93 68 72 78 NL 647 30.66% 341	1 NT 79 96 108 90 97 95 77 77 77 77 77 34.08% NT 719 34.08% 3415 PM -	1 NR 92 99 83 110 94 86 92 88 88 NR 744 35.26% 05:15 PM 386	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 78 82 85 90 87 89 85 57 57 SL 653 41.30% 344	ST 4 4 5 5 5 8 1 1 2 ST 30 1.90% 22	SR 116 116 109 99 138 123 95 102 SR 898 56.80% 462	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 40 47 26 30 39 38 41 EL 307 14.47% 149	2.5 ET 186 203 234 199 234 206 183 183 183 ET 1628 76.76%	0.5 ER 21 30 21 21 25 23 26 19 ER 186 8.77%	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 WT 291 233 242 269 258 258 258 258 256 255 255 WT 2042 82.91% 1002	1 WR 58 55 55 46 57 50 50 WR 421 17.09% 210	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1053 1041 1068 1044 1121 1034 962 952 TOTAL 8275
4:00 PM 4:15 PM 4:30 PM 4:35 PM 5:00 PM 5:15 PM 5:30 PM 5:35 PM 5:45 PM TOTAL VOLUMES : APPROACH %'s : PEAK HR :	NL 88 79 80 89 93 68 72 78 NL 647 30.66%	1 NT 79 96 108 90 97 95 77 77 77 NT 719 34.08% 04:15 PM -	1 NR 92 99 83 110 94 86 82 88 NR 744 35.26% 05:15 PM 386 0.877	NU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SL 78 82 90 87 89 85 57 SL 653 41.30%	ST 4 5 5 8 1 1 2 ST 30 1.90%	SR 116 116 109 99 138 123 95 102 SR 898 56.80% 462 0.837	SU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EL 40 47 46 26 30 39 38 41 EL 307 14.47%	2.5 ET 186 203 234 199 234 206 183 183 ET 1628 76.76%	0.5 ER 21 30 21 21 23 23 26 19 ER 186 8.77% 97 0.808	EU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	WL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 WT 291 233 242 269 258 258 258 236 255 WT 2042 82.91%	1 WR 58 52 55 46 57 50 WR 421 17.09% 210 0.921	WU 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1053 1041 1068 1044 1121 1034 962 952 TOTAL 8275 TOTAL

Appendix C: Project LOS Analysis Sheets

Project Title:	AVCCD FMP EIR
Intersection:	1 - 40th Street & Avenue K
Description:	Existing

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :	Ν
E-W Split Phase :	Ν
Lost Time (% of cycle) :	10
V/C Round Off (decs.) :	3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.08	16	135	0.109	N-S(1):	0.112
	TH	0.92	174	1,465	0.119 *	N-S(2):	0.181 *
	LT	1.00	71	1,600	0.044	E-W(1):	0.291 *
Westbound	RT	1.00	42	1,600	0.004	E-W(2):	0.210
	TH	1.00	305	1,600	0.191		
	LT	1.00	37	1,600	0.023 *	V/C:	0.472
Northbound	RT	1.00	127	1,600	0.068	Lost Time:	0.100
	TH	2.00	184	3,200	0.058	ITS:	0.000
	LT	1.00	99	1,600	0.062 *		
Eastbound	RT	0.00	99	0	0.000	ICU:	0.572
	TH	2.00	760	3,200	0.268 *		
	LT	1.00	31	1,600	0.019	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.05	11	83	0.125	N-S(1):	0.085
	TH	0.95	201	1,517	0.133 *	N-S(2):	0.174 *
	LT	1.00	44	1,600	0.028	E-W(1):	0.182
Westbound	RT	1.00	42	1,600	0.013	E-W(2):	0.284 *
	TH	1.00	429	1,600	0.268 *		
	LT	1.00	83	1,600	0.052	V/C:	0.458
Northbound	RT	1.00	68	1,600	0.017	Lost Time:	0.100
	TH	2.00	183	3,200	0.057	ITS:	0.000
	LT	1.00	65	1,600	0.041 *		
Eastbound	RT	0.00	38	0	0.000	ICU:	0.558
	TH	2.00	378	3,200	0.130		
	LT	1.00	25	1,600	0.016 *	LOS:	А

ntersection
ntersection Delay, s/veh
ntersection LOS

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	¢Î		٦	ef 👘		۳.	•	1	٦	ef 🔰	
Traffic Vol, veh/h	15	312	30	10	245	50	20	16	3	200	39	64
Future Vol, veh/h	15	312	30	10	245	50	20	16	3	200	39	64
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	18	380	37	12	299	61	24	20	4	244	48	78
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			2			2			2		
HCM Control Delay	38			28.4			12.5			18.4		
HCM LOS	E			D			В			С		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	91%	0%	83%	0%	38%	
Vol Right, %	0%	0%	100%	0%	9%	0%	17%	0%	62%	
Sign Control	Stop									
Traffic Vol by Lane	20	16	3	15	342	10	295	200	103	
LT Vol	20	0	0	15	0	10	0	200	0	
Through Vol	0	16	0	0	312	0	245	0	39	
RT Vol	0	0	3	0	30	0	50	0	64	
Lane Flow Rate	24	20	4	18	417	12	360	244	126	
Geometry Grp	8	8	8	8	8	8	8	8	8	
Degree of Util (X)	0.064	0.049	0.008	0.04	0.849	0.027	0.744	0.564	0.257	
Departure Headway (Hd)	9.474	8.955	8.228	7.899	7.328	8.074	7.444	8.321	7.358	
Convergence, Y/N	Yes									
Сар	377	398	432	452	492	442	486	432	486	
Service Time	7.271	6.752	6.025	5.662	5.091	5.84	5.209	6.088	5.125	
HCM Lane V/C Ratio	0.064	0.05	0.009	0.04	0.848	0.027	0.741	0.565	0.259	
HCM Control Delay	12.9	12.2	11.1	11	39.2	11.1	29	21.4	12.7	
HCM Lane LOS	В	В	В	В	E	В	D	С	В	
HCM 95th-tile Q	0.2	0.2	0	0.1	8.7	0.1	6.2	3.4	1	

Intercection	
tersection	
Intersection Delay, s/veh	13.2
Intersection LOS	В

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	¢Î		٦	el 🗧		٦	•	1	٦	eî	
Traffic Vol, veh/h	20	189	12	2	338	33	9	12	14	32	8	15
Future Vol, veh/h	20	189	12	2	338	33	9	12	14	32	8	15
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	201	13	2	360	35	10	13	15	34	9	16
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			2			2			2		
HCM Control Delay	11.1			15.3			9.3			9.8		
HCM LOS	В			С			А			А		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	94%	0%	91%	0%	35%	
Vol Right, %	0%	0%	100%	0%	6%	0%	9%	0%	65%	
Sign Control	Stop									
Traffic Vol by Lane	9	12	14	20	201	2	371	32	23	
LT Vol	9	0	0	20	0	2	0	32	0	
Through Vol	0	12	0	0	189	0	338	0	8	
RT Vol	0	0	14	0	12	0	33	0	15	
Lane Flow Rate	10	13	15	21	214	2	395	34	24	
Geometry Grp	8	8	8	8	8	8	8	8	8	
Degree of Util (X)	0.019	0.023	0.024	0.037	0.335	0.003	0.581	0.067	0.041	
Departure Headway (Hd)	7.12	6.613	5.903	6.182	5.637	5.862	5.298	7.07	6.097	
Convergence, Y/N	Yes									
Сар	506	544	610	573	631	605	675	510	591	
Service Time	4.822	4.315	3.605	3.981	3.436	3.647	3.083	4.77	3.797	
HCM Lane V/C Ratio	0.02	0.024	0.025	0.037	0.339	0.003	0.585	0.067	0.041	
HCM Control Delay	10	9.5	8.8	9.2	11.3	8.7	15.3	10.3	9.1	
HCM Lane LOS	А	А	А	А	В	А	С	В	А	
HCM 95th-tile Q	0.1	0.1	0.1	0.1	1.5	0	3.8	0.2	0.1	

Project Title: Intersection: AVCCD FMP EIR 3 - 32nd St/Driveway & Avenue K **Description:** Existing

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase : Ν E-W Split Phase : Ν Lost Time (% of cycle) : 10 3

V/C Round Off (decs.) :

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.82	23	1,314	0.000	N-S(1):	0.116 *
	TH	0.18	5	286	0.018	N-S(2):	0.042
	LT	1.00	116	1,600	0.073 *	E-W(1):	0.204
Westbound	RT	0.00	223	0	0.000	E-W(2):	0.285 *
	TH	3.00	424	3,200	0.202 *		
	LT	1.00	11	1,600	0.007	V/C:	0.401
Northbound	RT	0.71	48	1,129	0.039	Lost Time:	0.100
	TH	0.29	20	471	0.043 *	ITS:	0.000
	LT	1.00	38	1,600	0.024		
Eastbound	RT	0.00	21	0	0.000	ICU:	0.501
	TH	3.00	923	4,800	0.197		
	LT	1.00	132	1,600	0.083 *	LOS:	А

PM PEAK HOUR Date/Time:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.91	31	1,459	0.001	N-S(1):	0.088 *
	TH	0.09	3	141	0.021	N-S(2):	0.025
	LT	1.00	103	1,600	0.064 *	E-W(1):	0.135
Westbound	RT	0.00	76	0	0.000	E-W(2):	0.188 *
	TH	3.00	629	4,800	0.147 *		
	LT	1.00	33	1,600	0.021	V/C:	0.276
Northbound	RT	0.90	35	1,436	0.014	Lost Time:	0.100
	TH	0.10	4	164	0.024 *	ITS:	0.000
	LT	1.00	6	1,600	0.004		
Eastbound	RT	0.00	7	0	0.000	ICU:	0.376
	TH	3.00	539	4,800	0.114		
	LT	1.00	65	1,600	0.041 *	LOS:	А

Project Title:	AVCCD FMP EIR
Intersection:	4 - 30th Street & Avenue J
Description:	Existing

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :	Ν
E-W Split Phase :	Ν
Lost Time (% of cycle) :	10
V/C Round Off (decs.) :	3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	104	1,600	0.032	N-S(1):	0.123
	TH	2.00	441	3,200	0.138 *	N-S(2):	0.239 *
	LT	1.00	54	1,600	0.034	E-W(1):	0.332 *
Westbound	RT	1.00	33	1,600	0.004	E-W(2):	0.219
	TH	2.00	488	3,200	0.153		
	LT	1.00	182	1,600	0.114 *	V/C:	0.571
Northbound	RT	1.00	127	1,600	0.023	Lost Time:	0.100
	TH	2.00	285	3,200	0.089	ITS:	0.000
	LT	1.00	161	1,600	0.101 *		
Eastbound	RT	0.00	211	0	0.000	ICU:	0.671
	TH	3.00	833	4,800	0.218 *		
	LT	1.00	106	1,600	0.066	LOS:	В

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	134	1,600	0.057	N-S(1):	0.095
	TH	2.00	280	3,200	0.088 *	N-S(2):	0.132 *
	LT	1.00	15	1,600	0.009	E-W(1):	0.240 *
Westbound	RT	1.00	36	1,600	0.018	E-W(2):	0.232
	TH	2.00	568	3,200	0.178		
	LT	1.00	221	1,600	0.138 *	V/C:	0.372
Northbound	RT	1.00	159	1,600	0.030	Lost Time:	0.100
	TH	2.00	274	3,200	0.086	ITS:	0.000
	LT	1.00	71	1,600	0.044 *		
Eastbound	RT	0.00	59	0	0.000	ICU:	0.472
	TH	3.00	432	4,800	0.102 *		
	LT	1.00	86	1,600	0.054	LOS:	А

Project Title:	AVCCD FMP EIR
Intersection:	5 - 30th Street & Avenue J-8
Description:	Existing

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :	Ν
E-W Split Phase :	Ν
Lost Time (% of cycle) :	10
V/C Round Off (decs.) :	3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	124	1,600	0.058	N-S(1):	0.219
	TH	2.00	680	3,200	0.213 *	N-S(2):	0.266 *
	LT	1.00	138	1,600	0.086	E-W(1):	0.269 *
Westbound	RT	0.00	49	0	0.000	E-W(2):	0.174
	TH	2.00	380	3,200	0.134		
	LT	1.00	153	1,600	0.096 *	V/C:	0.535
Northbound	RT	1.00	123	1,600	0.029	Lost Time:	0.100
	TH	2.00	425	3,200	0.133	ITS:	0.000
	LT	1.00	85	1,600	0.053 *		
Eastbound	RT	0.00	98	0	0.000	ICU:	0.635
	TH	2.00	457	3,200	0.173 *		
	LT	1.00	64	1,600	0.040	LOS:	В
						I	

Date/Time: PM PEAK HOUR

					N//O		
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LY515
Southbound	RT	1.00	51	1,600	0.011	N-S(1):	0.169
	TH	2.00	504	3,200	0.158 *	N-S(2):	0.213 *
	LT	1.00	50	1,600	0.031	E-W(1):	0.201 *
Westbound	RT	0.00	68	0	0.000	E-W(2):	0.193
	TH	2.00	419	3,200	0.152		
	LT	1.00	165	1,600	0.103 *	V/C:	0.414
Northbound	RT	1.00	109	1,600	0.017	Lost Time:	0.100
	TH	2.00	441	3,200	0.138	ITS:	0.000
	LT	1.00	88	1,600	0.055 *		
Eastbound	RT	0.00	76	0	0.000	ICU:	0.514
	ТН	2.00	236	3,200	0.098 *		
	LT	1.00	66	1,600	0.041	LOS:	А

05/30/201	B
-----------	---

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		- 11	1		- 11
Traffic Vol, veh/h	11	15	771	15	17	667
Future Vol, veh/h	11	15	771	15	17	667
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	0	100	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	87	87	87	87	87	87
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	13	17	886	17	20	767

Major/Minor	Minor1	Μ	lajor1	Ν	lajor2	
Conflicting Flow All	1310	443	0	0	903	0
Stage 1	886	-	-	-	-	-
Stage 2	424	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	151	562	-	-	749	-
Stage 1	363	-	-	-	-	-
Stage 2	628	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	r 147	562	-	-	749	-
Mov Cap-2 Maneuve	r 147	-	-	-	-	-
Stage 1	353	-	-	-	-	-
Stage 2	628	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	20.9	0	0.2
HCM LOS	С		

Minor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT	
Capacity (veh/h)	-	- 256	749	-	
HCM Lane V/C Ratio	-	- 0.117	0.026	-	
HCM Control Delay (s)	-	- 20.9	9.9	-	
HCM Lane LOS	-	- C	А	-	
HCM 95th %tile Q(veh)	-	- 0.4	0.1	-	

05/30/2018

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		- 11	1	<u>ار</u>	^
Traffic Vol, veh/h	5	14	631	19	21	646
Future Vol, veh/h	5	14	631	19	21	646
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	0	100	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	5	15	671	20	22	687

Major/Minor	Minor1	Μ	lajor1	Ν	lajor2	
Conflicting Flow All	1059	336	0	0	691	0
Stage 1	671	-	-	-	-	-
Stage 2	388	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	220	660	-	-	900	-
Stage 1	470	-	-	-	-	-
Stage 2	655	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	r 215	660	-	-	900	-
Mov Cap-2 Maneuver	r 215	-	-	-	-	-
Stage 1	459	-	-	-	-	-
Stage 2	655	-	-	-	-	-
					0.0	

Approach	WB	NB	SB
HCM Control Delay, s	13.8	0	0.3
HCM LOS	В		

Minor Lane/Major Mvmt	NBT	NBRWBLn	SBL	SBT
Capacity (veh/h)	-	- 42	900	-
HCM Lane V/C Ratio	-	- 0.04	0.025	-
HCM Control Delay (s)	-	- 13.	9.1	-
HCM Lane LOS	-	- [B A	-
HCM 95th %tile Q(veh)	-	- 0.1	0.1	-

Project Title:AVCCD FMP EIRIntersection:7 - 30th Street & Avenue KDescription:Existing

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
-							
Southbound	RT	1.00	145	1,600	0.067	N-S(1):	0.261 *
	TH	2.00	405	3,200	0.127	N-S(2):	0.217
	LT	2.00	154	2,880	0.053 *	E-W(1):	0.211
Westbound	RT	0.00	260	0	0.000	E-W(2):	0.277 *
	TH	3.00	476	3,200	0.230 *		
	LT	2.00	57	2,880	0.020	V/C:	0.538
Northbound	RT	1.00	154	1,600	0.086	Lost Time:	0.100
	TH	2.00	666	3,200	0.208 *	ITS:	0.000
	LT	2.00	258	2,880	0.090		
Eastbound	RT	0.00	176	0	0.000	ICU:	0.638
	TH	3.00	742	4,800	0.191		
	LT	2.00	136	2,880	0.047 *	LOS:	В

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	1.00	105	1,600	0.049	N-S(1):	0.214 *	
	TH	2.00	495	3,200	0.155	N-S(2):	0.204	
	LT	2.00	214	2,880	0.074 *	E-W(1):	0.176 *	
Westbound	RT	0.00	169	0	0.000	E-W(2):	0.174	
	TH	3.00	509	4,800	0.141			
	LT	2.00	107	2,880	0.037 *	V/C:	0.390	
Northbound	RT	1.00	124	1,600	0.059	Lost Time:	0.100	
	TH	2.00	447	3,200	0.140 *	ITS:	0.000	
	LT	2.00	141	2,880	0.049			
Eastbound	RT	0.00	159	0	0.000	ICU:	0.490	
	TH	3.00	506	4,800	0.139 *			
	LT	2.00	96	2,880	0.033	LOS:	А	

Project Title:	AVCCD FMP EIR
Intersection:	8 - 30th Street & Avenue K-8
Description:	Existing

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	1.00	50	1,600	0.003	N-S(1):	0.311 *	
	TH	2.00	515	3,200	0.161	N-S(2):	0.172	
	LT	1.00	95	1,600	0.059 *	E-W(1):	0.157 *	
Westbound	RT	0.00	125	1,600	0.078	E-W(2):	0.136	
	TH	2.00	85	1,600	0.053			
	LT	1.00	83	1,600	0.052 *	V/C:	0.468	
Northbound	RT	1.00	79	1,600	0.023	Lost Time:	0.100	
	TH	2.00	805	3,200	0.252 *	ITS:	0.000	
	LT	1.00	18	1,600	0.011			
Eastbound	RT	1.00	33	1,600	0.015	ICU:	0.568	
	TH	1.00	168	1,600	0.105 *			
	LT	1.00	92	1,600	0.058	LOS:	А	

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	1.00	77	1,600	0.029	N-S(1):	0.220	
	TH	2.00	612	3,200	0.191 *	N-S(2):	0.224 *	
	LT	1.00	59	1,600	0.037	E-W(1):	0.123 *	
Westbound	RT	0.00	85	0	0.000	E-W(2):	0.121	
	TH	2.00	176	3,200	0.082			
	LT	1.00	112	1,600	0.070 *	V/C:	0.347	
Northbound	RT	1.00	115	1,600	0.037	Lost Time:	0.100	
	TH	2.00	584	3,200	0.183	ITS:	0.000	
	LT	1.00	53	1,600	0.033 *			
Eastbound	RT	1.00	46	1,600	0.012	ICU:	0.447	
	TH	1.00	84	1,600	0.053 *			
	LT	1.00	62	1,600	0.039	LOS:	А	

Project Title:	AVCCD FMP EIR
Intersection:	9 - 25th Street & Avenue J
Description:	Existing

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :	Ν
E-W Split Phase :	Ν
Lost Time (% of cycle) :	10
V/C Round Off (decs.) :	3

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	1.00	139	1,600	0.027	N-S(1):	0.102	
	TH	1.00	121	1,600	0.076 *	N-S(2):	0.105 *	
	LT	1.00	20	1,600	0.013	E-W(1):	0.261 *	
Westbound	RT	1.00	21	1,600	0.007	E-W(2):	0.258	
	TH	3.00	660	4,800	0.138			
	LT	1.00	82	1,600	0.051 *	V/C:	0.366	
Northbound	RT	1.00	108	1,600	0.042	Lost Time:	0.100	
	TH	1.00	143	1,600	0.089	ITS:	0.000	
	LT	1.00	46	1,600	0.029 *			
Eastbound	RT	0.00	118	0	0.000	ICU:	0.466	
	TH	3.00	888	4,800	0.210 *			
	LT	1.00	192	1,600	0.120	LOS:	А	

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	80	1,600	0.001	N-S(1):	0.144 *
	TH	1.00	138	1,600	0.086	N-S(2):	0.102
	LT	1.00	32	1,600	0.020 *	E-W(1):	0.219
Westbound	RT	1.00	59	1,600	0.027	E-W(2):	0.256 *
	TH	3.00	759	4,800	0.158 *		
	LT	1.00	174	1,600	0.109	V/C:	0.400
Northbound	RT	1.00	98	1,600	0.007	Lost Time:	0.100
	TH	1.00	198	1,600	0.124 *	ITS:	0.000
	LT	1.00	26	1,600	0.016		
Eastbound	RT	0.00	48	0	0.000	ICU:	0.500
	TH	3.00	479	4,800	0.110		
	LT	1.00	157	1,600	0.098 *	LOS:	А

Project Title:	AVCCD FMP EIR
Intersection:	10 - 25th Street & Avenue J-8
Description:	Existing

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :	Ν
E-W Split Phase :	Ν
Lost Time (% of cycle) :	10
V/C Round Off (decs.) :	3

	NA 47				N//O		
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	18	0	0.000	N-S(1):	0.219 *
	TH	2.00	163	3,200	0.057	N-S(2):	0.106
	LT	1.00	225	1,600	0.141 *	E-W(1):	0.257 *
Westbound	RT	0.00	75	0	0.000	E-W(2):	0.218
	TH	2.00	555	3,200	0.197		
	LT	1.00	20	1,600	0.013 *	V/C:	0.476
Northbound	RT	0.00	96	0	0.000	Lost Time:	0.100
	TH	2.00	152	3,200	0.078 *	ITS:	0.000
	LT	1.00	78	1,600	0.049		
Eastbound	RT	0.00	53	0	0.000	ICU:	0.576
	TH	2.00	728	3,200	0.244 *		
	LT	1.00	34	1,600	0.021	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	0.00	26	0	0.000	N-S(1):	0.158 *	
	TH	2.00	212	3,200	0.074	N-S(2):	0.090	
	LT	1.00	144	1,600	0.090 *	E-W(1):	0.149	
Westbound	RT	0.00	155	0	0.000	E-W(2):	0.270 *	
	TH	2.00	658	3,200	0.254 *			
	LT	1.00	46	1,600	0.029	V/C:	0.428	
Northbound	RT	0.00	36	0	0.000	Lost Time:	0.100	
	TH	2.00	181	3,200	0.068 *	ITS:	0.000	
	LT	1.00	26	1,600	0.016			
Eastbound	RT	0.00	22	0	0.000	ICU:	0.528	
	TH	2.00	363	3,200	0.120			
	LT	1.00	25	1,600	0.016 *	LOS:	А	

Project Title:	AVCCD FMP EIR
Intersection:	11 - 25th Street & Avenue K
Description:	Existing

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :	Ν
E-W Split Phase :	Ν
Lost Time (% of cycle) :	10
V/C Round Off (decs.) :	3

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	ICU ANALYSIS	
Southbound	RT	1.00	43	1,600	0.009	N-S(1):	0.125 *	
	TH	1.00	107	1,600	0.067	N-S(2):	0.073	
	LT	1.00	100	1,600	0.063 *	E-W(1):	0.326 *	
Westbound	RT	1.00	43	1,600	0.000	E-W(2):	0.272	
	TH	2.00	755	3,200	0.236			
	LT	1.00	27	1,600	0.017 *	V/C:	0.451	
Northbound	RT	0.00	66	0	0.000	Lost Time:	0.100	
	TH	2.00	133	3,200	0.062 *	ITS:	0.000	
	LT	1.00	10	1,600	0.006			
Eastbound	RT	1.00	27	1,600	0.014	ICU:	0.551	
	TH	2.00	988	3,200	0.309 *			
	LT	1.00	57	1,600	0.036	LOS:	А	

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
/				•	.,		
Southbound	RT	1.00	51	1,600	0.018	N-S(1):	0.094
	TH	1.00	136	1,600	0.085 *	N-S(2):	0.098 *
	LT	1.00	74	1,600	0.046	E-W(1):	0.274 *
Westbound	RT	1.00	70	1,600	0.021	E-W(2):	0.270
	TH	2.00	775	3,200	0.242		
	LT	1.00	40	1,600	0.025 *	V/C:	0.372
Northbound	RT	0.00	40	0	0.000	Lost Time:	0.100
	TH	2.00	112	3,200	0.048	ITS:	0.000
	LT	1.00	21	1,600	0.013 *		
Eastbound	RT	1.00	17	1,600	0.004	ICU:	0.472
	TH	2.00	798	3,200	0.249 *		
	LT	1.00	44	1,600	0.028	LOS:	А

Project Title:AVCCD FMP EIRIntersection:12 - SR-14 SB Off Ramp & Avenue JDescription:Existing

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	154	1,600	0.096	N-S(1):	0.108 *
	TH	0.00	0	0	0.000	N-S(2):	0.096
	LT	1.00	172	1,600	0.108 *	E-W(1):	0.222 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.147
	TH	3.00	707	4,800	0.147		
	LT	0.00	0	0	0.000 *	V/C:	0.330
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.430
	TH	3.00	1,064	4,800	0.222 *		
	LT	0.00	0	0	0.000	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	259	1,600	0.162 *	N-S(1):	0.094
	TH	0.00	0	0	0.000	N-S(2):	0.162 *
	LT	1.00	151	1,600	0.094	E-W(1):	0.184
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.221 *
	TH	3.00	1,062	4,800	0.221 *		
	LT	0.00	0	0	0.000	V/C:	0.383
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	0.00	0	0	0.000 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.483
	TH	3.00	883	4,800	0.184		
	LT	0.00	0	0	0.000 *	LOS:	А

Project Title:AVCCD FMP EIRIntersection:13 - 20th Street & SR-14 NB Off RampDescription:Existing

AM PEAK HOUR

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time:

APPROACH MVMT LANES VOLUME CAPACITY V/C ICU ANALYSIS Southbound RT 0.00 0 0 0.000 N-S(1): 0.079 ΤH 3.00 468 4,800 0.098 * N-S(2): 0.098 * 0.000 LT 0.00 0 E-W(1): 0.178 0 Westbound RT 578 1,600 0.361 * 0.361 * 1.00 E-W(2): ΤH 0.00 0 0.000 0 LT 1.00 285 1,600 0.178 V/C: 0.459 Northbound Lost Time: RT 0.00 0.100 0 0.000 0 TΗ 3.00 381 4,800 0.079 ITS: 0.000 LT 0.00 0 0.000 * 0 0 Eastbound RT 0.00 0 0.000 ICU: 0.559 0.00 0 TΗ 0 0.000 0.00 0 0 0.000 * LOS: А LT

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.098
	TH	3.00	873	4,800	0.182 *	N-S(2):	0.182 *
	LT	0.00	0	0	0.000	E-W(1):	0.265
Westbound	RT	1.00	487	1,600	0.304 *	E-W(2):	0.304 *
	ТН	0.00	0	0	0.000		
	LT	1.00	424	1,600	0.265	V/C:	0.486
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	ТН	3.00	468	4,800	0.098	ITS:	0.000
	LT	0.00	0	0	0.000 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.586
	ТН	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	А

Project Title:	AVCCD FMP EIR
Intersection:	14 - 20th Street & Avenue J-8
Description:	Existing

Thru Lane:	1600	vph
Left Lane:	1600	vph
Double Lt Penalty:	10	%
ITS:	0	%
OLA Movements :		
FF Movements:		

N-S Split Phase :	Ν
E-W Split Phase :	Ν
Lost Time (% of cycle) :	10
V/C Round Off (decs.) :	3

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	2.00	428	3,200	0.103 *	N-S(1):	0.130
	TH	2.00	242	3,200	0.076	N-S(2):	0.144 *
	LT	1.00	71	1,600	0.044	E-W(1):	0.237 *
Westbound	RT	0.00	29	0	0.000	E-W(2):	0.204
	TH	2.00	430	3,200	0.143		
	LT	1.00	102	1,600	0.064 *	V/C:	0.381
Northbound	RT	1.00	145	1,600	0.059	Lost Time:	0.100
	TH	2.00	276	3,200	0.086	ITS:	0.000
	LT	1.00	65	1,600	0.041 *		
Eastbound	RT	0.00	79	0	0.000	ICU:	0.481
	TH	2.00	474	3,200	0.173 *		
	LT	1.00	97	1,600	0.061	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	L1919
Southbound	RT	2.00	759	3,200	0.215 *	N-S(1):	0.164
	TH	2.00	417	3,200	0.130	N-S(2):	0.292 *
	LT	1.00	80	1,600	0.050	E-W(1):	0.182
Westbound	RT	0.00	52	0	0.000	E-W(2):	0.257 *
	TH	2.00	627	3,200	0.212 *		
	LT	1.00	144	1,600	0.090	V/C:	0.549
Northbound	RT	1.00	116	1,600	0.028	Lost Time:	0.100
	TH	2.00	364	3,200	0.114	ITS:	0.000
	LT	1.00	123	1,600	0.077 *		
Eastbound	RT	0.00	64	0	0.000	ICU:	0.649
	TH	2.00	231	3,200	0.092		
	LT	1.00	72	1,600	0.045 *	LOS:	В

Project Title:	AVCCD FMP EIR
Intersection:	15 - 20th Street & Avenue K
Description:	Existing

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :	Ν
E-W Split Phase :	Ν
Lost Time (% of cycle) :	10
V/C Round Off (decs.) :	3

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	84	1,600	0.000	N-S(1):	0.136 *
	TH	2.00	169	3,200	0.053	N-S(2):	0.075
	LT	2.00	97	2,880	0.034 *	E-W(1):	0.240
Westbound	RT	0.00	47	0	0.000	E-W(2):	0.259 *
	TH	3.00	683	4,800	0.152 *		
	LT	1.00	78	1,600	0.049	V/C:	0.395
Northbound	RT	0.00	80	0	0.000	Lost Time:	0.100
	TH	2.00	247	3,200	0.102 *	ITS:	0.000
	LT	2.00	63	2,880	0.022		
Eastbound	RT	1.00	76	1,600	0.037	ICU:	0.495
	TH	3.00	915	4,800	0.191		
	LT	1.00	171	1,600	0.107 *	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	110	1,600	0.019	N-S(1):	0.160 *
	TH	2.00	290	3,200	0.091	N-S(2):	0.124
	LT	2.00	163	2,880	0.057 *	E-W(1):	0.258
Westbound	RT	0.00	102	0	0.000	E-W(2):	0.281 *
	TH	3.00	767	4,800	0.181 *		
	LT	1.00	155	1,600	0.097	V/C:	0.441
Northbound	RT	0.00	94	0	0.000	Lost Time:	0.100
	TH	2.00	237	3,200	0.103 *	ITS:	0.000
	LT	2.00	95	2,880	0.033		
Eastbound	RT	1.00	56	1,600	0.019	ICU:	0.541
	TH	3.00	775	4,800	0.161		
	LT	1.00	160	1,600	0.100 *	LOS:	А

Project Title:	AVCCD FMP EIR
Intersection:	16 - 17th Street & Avenue K
Description:	Existing

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :	Ν
E-W Split Phase :	Ν
Lost Time (% of cycle) :	10
V/C Round Off (decs.) :	3

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	31	1,600	0.004	N-S(1):	0.162 *
	TH	1.00	28	1,600	0.018	N-S(2):	0.046
	LT	1.00	151	1,600	0.094 *	E-W(1):	0.255 *
Westbound	RT	0.00	72	0	0.000	E-W(2):	0.206
	TH	3.00	767	4,800	0.175		
	LT	1.00	75	1,600	0.047 *	V/C:	0.417
Northbound	RT	1.00	147	1,600	0.068 *	Lost Time:	0.100
	TH	1.00	47	1,600	0.029	ITS:	0.000
	LT	1.00	44	1,600	0.028		
Eastbound	RT	0.00	58	0	0.000	ICU:	0.517
	TH	3.00	941	4,800	0.208 *		
	LT	1.00	50	1,600	0.031	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	38	1,600	0.008	N-S(1):	0.148 *
	TH	1.00	43	1,600	0.027	N-S(2):	0.055
	LT	1.00	178	1,600	0.111 *	E-W(1):	0.310 *
Westbound	RT	0.00	138	0	0.000	E-W(2):	0.263
	TH	3.00	974	4,800	0.232		
	LT	1.00	153	1,600	0.096 *	V/C:	0.458
Northbound	RT	1.00	132	1,600	0.035	Lost Time:	0.100
	TH	1.00	59	1,600	0.037 *	ITS:	0.000
	LT	1.00	44	1,600	0.028		
Eastbound	RT	0.00	62	0	0.000	ICU:	0.558
	TH	3.00	965	4,800	0.214 *		
	LT	1.00	50	1,600	0.031	LOS:	А

Project Title: Intersection: Description:			ıps & Avenue	К			
Thru Lane	: 1600	vph			N-S	Split Phase :	Ν
Left Lane						, Split Phase :	Ν
Double Lt Penalty						(% of cycle) :	10
ITŚ		%				d Off (decs.) :	3
OLA Movements	:					, , , , , , , , , , , , , , , , , , ,	
FF Movements	: EBR	,					
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
	DT	0.00	4.40	4 000	0.440		0 405 *
Southbound	RT	0.83	149	1,328	0.112	N-S(1):	0.125 *
	TH	0.00	0	0	0.000	N-S(2):	0.112
		1.17	210	1,685	0.125 *	E-W(1):	0.263 *
Westbound	RT	0.00	279	0	0.000	E-W(2):	0.224
	TH	3.00	796	4,800	0.224		0 000
N I a utila la la conse al		0.00	0	0	0.000 *	V/C:	0.388
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0 0	0	0.000 *	ITS:	0.000
Eastbound	LT RT	0.00	338	0	0.000	ICU:	0.488
Easibound	TH	3.00	923	4,800	0.000 *	100.	0.400
	LT	0.00	923 0	4,800	0.203	LOS:	А
Date/Time:	PM PEA	K HOUR					
Date/Time: APPROACH	PM PEA	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
APPROACH	MVMT	LANES					
	MVMT RT	LANES 0.97	209	1,559	0.134	N-S(1):	0.149 *
APPROACH	MVMT RT TH	LANES 0.97 0.00	209 0	1,559 0	0.134 0.000	N-S(1): N-S(2):	0.149 * 0.134
APPROACH Southbound	MVMT RT TH LT	0.97 0.00 1.03	209 0 220	1,559 0 1,477	0.134 0.000 0.149 *	N-S(1): N-S(2): E-W(1):	0.149 * 0.134 0.268
APPROACH Southbound	MVMT RT TH LT RT	LANES 0.97 0.00 1.03 0.00	209 0 220 529	1,559 0 1,477 0	0.134 0.000 0.149 * 0.000	N-S(1): N-S(2):	0.149 * 0.134 0.268
APPROACH Southbound	MVMT RT TH LT RT TH	LANES 0.97 0.00 1.03 0.00 3.00	209 0 220 529 1,123	1,559 0 1,477 0 4,800	0.134 0.000 0.149 * 0.000 0.344 *	N-S(1): N-S(2): E-W(1): E-W(2):	0.149 * 0.134 0.268 0.344 *
APPROACH Southbound Westbound	MVMT RT TH LT RT TH LT	LANES 0.97 0.00 1.03 0.00 3.00 0.00	209 0 220 529 1,123 0	1,559 0 1,477 0 4,800 0	0.134 0.000 0.149 * 0.000 0.344 * 0.000	N-S(1): N-S(2): E-W(1): E-W(2): V/C:	0.149 * 0.134 0.268 0.344 * 0.493
APPROACH Southbound Westbound	MVMT RT TH LT RT TH LT RT	LANES 0.97 0.00 1.03 0.00 3.00 0.00 0.00	209 0 220 529 1,123 0 0	1,559 0 1,477 0 4,800 0 0	0.134 0.000 0.149 * 0.000 0.344 * 0.000 0.000	N-S(1): N-S(2): E-W(1): E-W(2): V/C: Lost Time:	0.149 * 0.134 0.268 0.344 * 0.493 0.100
APPROACH Southbound Westbound	MVMT RT TH LT RT TH LT RT TH	LANES 0.97 0.00 1.03 0.00 3.00 0.00 0.00 0.00	209 0 220 529 1,123 0 0 0	1,559 0 1,477 0 4,800 0 0 0	0.134 0.000 0.149 * 0.000 0.344 * 0.000 0.000 0.000 *	N-S(1): N-S(2): E-W(1): E-W(2): V/C:	0.149 * 0.134 0.268 0.344 * 0.493
APPROACH Southbound Westbound Northbound	MVMT RT TH LT RT TH LT RT TH LT	LANES 0.97 0.00 1.03 0.00 3.00 0.00 0.00 0.00 0.00	209 0 220 529 1,123 0 0 0 0	1,559 0 1,477 0 4,800 0 0 0 0	0.134 0.000 0.149 * 0.000 0.344 * 0.000 0.000 0.000 * 0.000	N-S(1): N-S(2): E-W(1): E-W(2): V/C: Lost Time: ITS:	0.149 * 0.134 0.268 0.344 * 0.493 0.100 0.000
APPROACH	MVMT RT TH LT RT TH LT RT TH	LANES 0.97 0.00 1.03 0.00 3.00 0.00 0.00 0.00	209 0 220 529 1,123 0 0 0	1,559 0 1,477 0 4,800 0 0 0	0.134 0.000 0.149 * 0.000 0.344 * 0.000 0.000 0.000 *	N-S(1): N-S(2): E-W(1): E-W(2): V/C: Lost Time:	0.149 * 0.134 0.268 0.344 * 0.493 0.100

Project Title:AVCCD FMP EIRIntersection:18 - 15th St/SR-14 NB Ramps & Ave KDescription:Existing

Thru Lane:	1600 vph	
Left Lane:	1600 vph	
Double Lt Penalty:	10 %	
ITS:	0 %	
OLA Movements :		
FF Movements:		

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LY515
Southbound	RT	1.00	207	1,600	0.092	N-S(1):	0.350 *
	TH	0.07	7	112	0.062	N-S(2):	0.264
	LT	1.93	193	2,779	0.069 *	E-W(1):	0.185
Westbound	RT	1.00	180	1,600	0.113	E-W(2):	0.223 *
	TH	3.00	710	4,800	0.148 *		
	LT	0.00	0	0	0.000	V/C:	0.573
Northbound	RT	1.00	355	1,600	0.222	Lost Time:	0.100
	TH	1.00	449	1,600	0.281 *	ITS:	0.000
	LT	1.00	275	1,600	0.172		
Eastbound	RT	0.00	94	0	0.000	ICU:	0.673
	TH	3.00	795	4,800	0.185		
	LT	2.00	217	2,880	0.075 *	LOS:	В

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	462	1,600	0.263 *	N-S(1):	0.371
	TH	0.12	22	192	0.114	N-S(2):	0.476 *
	LT	1.88	344	2,707	0.127	E-W(1):	0.201
Westbound	RT	1.00	210	1,600	0.131	E-W(2):	0.261 *
	TH	3.00	1,002	4,800	0.209 *		
	LT	0.00	0	0	0.000	V/C:	0.737
Northbound	RT	1.00	386	1,600	0.241	Lost Time:	0.100
	TH	1.00	391	1,600	0.244	ITS:	0.000
	LT	1.00	341	1,600	0.213 *		
Eastbound	RT	0.00	97	0	0.000	ICU:	0.837
	TH	3.00	870	4,800	0.201		
	LT	2.00	149	2,880	0.052 *	LOS:	D

Project Title: Intersection: Description:	1 - 40th	FMP EIR Street & A without Pro					
Thru Lan Left Lan Double Lt Penalt IT	e: 1600 y: 10	vph			E-W Lost Time	Split Phase : Split Phase : (% of cycle) : d Off (decs.) :	N N 10 3
OLA Movements FF Movement							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT TH LT	0.15 0.85 1.00	33 191 105	236 1,364 1,600	0.129 0.140 * 0.066	N-S(1): N-S(2): E-W(1):	0.135 0.204 * 0.302 *
Westbound	RT TH LT	1.00 1.00 1.00	46 309 41	1,600 1,600 1,600	0.000 0.193 0.026 *	E-W(2): V/C:	0.215 0.506
Northbound	RT TH LT	1.00 2.00 1.00	131 193 103	1,600 3,200 1,600	0.069 0.060 0.064 *	Lost Time: ITS:	0.100 0.000
Eastbound	RT TH LT	0.00 2.00 1.00	103 781 35	0 3,200 1,600	0.000 0.276 * 0.022	ICU: LOS:	0.606 B
Date/Time:	PM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT TH LT	0.19 0.81 1.00	50 210 48	308 1,292 1,600	0.153 0.163 * 0.030	N-S(1): N-S(2): E-W(1):	0.093 0.206 * 0.188
Westbound	RT TH LT	1.00 1.00 1.00	55 455 87	1,600 1,600 1,600	0.019 0.284 * 0.054	E-W(2): V/C:	0.302 * 0.508
Northbound	RT TH LT	1.00 2.00 1.00	72 200 69	1,600 3,200 1,600	0.018 0.063 0.043 *	Lost Time: ITS:	0.100 0.000
Eastbound	RT TH	0.00	47 382	0 3,200	0.000	ICU:	0.608

Intersection	
Intersection Delay, s/veh	76
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	¢Î		٦	el 🗧		٦.	•	1	٦.	ef 🔰	
Traffic Vol, veh/h	19	419	34	14	275	106	29	20	7	290	43	68
Future Vol, veh/h	19	419	34	14	275	106	29	20	7	290	43	68
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	22	476	39	16	313	120	33	23	8	330	49	77
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			2			2			2		
HCM Control Delay	127.3			65.4			14.5			34.7		
HCM LOS	F			F			В			D		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	92%	0%	72%	0%	39%	
Vol Right, %	0%	0%	100%	0%	8%	0%	28%	0%	61%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	29	20	7	19	453	14	381	290	111	
LT Vol	29	0	0	19	0	14	0	290	0	
Through Vol	0	20	0	0	419	0	275	0	43	
RT Vol	0	0	7	0	34	0	106	0	68	
Lane Flow Rate	33	23	8	22	515	16	433	330	126	
Geometry Grp	8	8	8	8	8	8	8	8	8	
Degree of Util (X)	0.096	0.063	0.021	0.053	1.187	0.039	0.976	0.814	0.279	
Departure Headway (Hd)	11.198	10.67	9.931	8.867	8.3	9.268	8.552	9.45	8.482	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	322	338	363	404	438	389	429	386	426	
Service Time	8.898	8.37	7.631	6.618	6.051	6.968	6.252	7.15	6.182	
HCM Lane V/C Ratio	0.102	0.068	0.022	0.054	1.176	0.041	1.009	0.855	0.296	
HCM Control Delay	15.1	14.1	12.8	12.1	132.1	12.3	67.4	42.5	14.4	
HCM Lane LOS	С	В	В	В	F	В	F	E	В	
HCM 95th-tile Q	0.3	0.2	0.1	0.2	19.8	0.1	11.8	7.2	1.1	

Intersection	
Intersection Delay, s/veh	60.3
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	¢Î		٦	ef 👘		٦	•	1	٦	et	
Traffic Vol, veh/h	24	266	21	6	497	106	18	16	18	118	12	19
Future Vol, veh/h	24	266	21	6	497	106	18	16	18	118	12	19
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	26	283	22	6	529	113	19	17	19	126	13	20
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			2			2			2		
HCM Control Delay	18.8			97			11.5			13.9		
HCM LOS	С			F			В			В		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	93%	0%	82%	0%	39%	
Vol Right, %	0%	0%	100%	0%	7%	0%	18%	0%	61%	
Sign Control	Stop									
Traffic Vol by Lane	18	16	18	24	287	6	603	118	31	
LT Vol	18	0	0	24	0	6	0	118	0	
Through Vol	0	16	0	0	266	0	497	0	12	
RT Vol	0	0	18	0	21	0	106	0	19	
Lane Flow Rate	19	17	19	26	305	6	641	126	33	
Geometry Grp	8	8	8	8	8	8	8	8	8	
Degree of Util (X)	0.046	0.038	0.039	0.053	0.586	0.012	1.118	0.286	0.067	
Departure Headway (Hd)	9.043	8.526	7.803	7.731	7.17	6.902	6.273	8.622	7.663	
Convergence, Y/N	Yes									
Сар	398	422	462	466	507	518	577	419	470	
Service Time	6.743	6.226	5.503	5.431	4.87	4.645	4.016	6.322	5.363	
HCM Lane V/C Ratio	0.048	0.04	0.041	0.056	0.602	0.012	1.111	0.301	0.07	
HCM Control Delay	12.2	11.6	10.8	10.9	19.5	9.7	97.9	14.7	10.9	
HCM Lane LOS	В	В	В	В	С	А	F	В	В	
HCM 95th-tile Q	0.1	0.1	0.1	0.2	3.7	0	20.2	1.2	0.2	

Project Title:AVCCD FMP EIRIntersection:3 - 32nd St/Driveway & Avenue KDescription:Future without Project

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.75	27	1,200	0.000	N-S(1):	0.171 *
	TH	0.25	9	400	0.023	N-S(2):	0.049
	LT	1.00	120	1,600	0.075 *	E-W(1):	0.245
Westbound	RT	0.00	227	0	0.000	E-W(2):	0.290 *
	TH	3.00	428	3,200	0.205 *		
	LT	1.00	58	1,600	0.036	V/C:	0.461
Northbound	RT	0.84	129	1,349	0.078	Lost Time:	0.100
	TH	0.16	24	251	0.096 *	ITS:	0.000
	LT	1.00	42	1,600	0.026		
Eastbound	RT	0.00	25	0	0.000	ICU:	0.561
	TH	3.00	979	4,800	0.209		
	LT	1.00	136	1,600	0.085 *	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	
AITROADH			VOLONIE	OALAOITT	V/O		
Southbound	RT	0.83	35	1,333	0.005	N-S(1):	0.153 *
	TH	0.17	7	267	0.026	N-S(2):	0.032
	LT	1.00	107	1,600	0.067 *	E-W(1):	0.208 *
Westbound	RT	0.00	80	0	0.000	E-W(2):	0.198
	ТН	3.00	663	4,800	0.155		
	LT	1.00	149	1,600	0.093 *	V/C:	0.361
Northbound	RT	0.94	129	1,507	0.039	Lost Time:	0.100
	TH	0.06	8	93	0.086 *	ITS:	0.000
	LT	1.00	10	1,600	0.006		
Eastbound	RT	0.00	11	0	0.000	ICU:	0.461
	TH	3.00	543	4,800	0.115 *		
	LT	1.00	69	1,600	0.043	LOS:	А

Project Title: Intersection: Description:	4 - 30th	FMP EIR Street & A without Pro					
Thru Lane Left Lane		•				Split Phase : Split Phase :	N N
Double Lt Penalty	r: 10	%			Lost Time	(% of cycle) : d Off (decs.) :	10 3
OLA Movements FF Movements						()	
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	116	0	0.000	N-S(1):	0.129
	TH	3.00	481	4,800	0.124 *	N-S(2):	0.225 *
	LT	1.00	54	1,600	0.034	E-W(1):	0.355 *
Westbound	RT	1.00	36	1,600	0.006	E-W(2):	0.254
	TH	2.00	499	3,200	0.156	()	
	LT	1.00	189	1,600	0.118 *	V/C:	0.580
Northbound	RT	0.00	135	0	0.000	Lost Time:	0.100
	TH	3.00	319	4,800	0.095	ITS:	0.000
	LT	1.00	162	1,600	0.101 *		
Eastbound	RT	0.00	212	0	0.000	ICU:	0.680
	TH	3.00	925	4,800	0.237 *		
	LT	1.00	157	1,600	0.098	LOS:	В
Date/Time:	PM PEA	K HOUR				L	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	216	0	0.000	N-S(1):	0.119
Counsound	TH	3.00	303	3,200	0.162 *	N-S(2):	0.208 *
	LT	1.00	18	1,600	0.011	E-W(1):	0.257 *
Westbound	RT	1.00	42	1,600	0.021	E-W(2):	0.254
	TH	2.00	585	3,200	0.183	= · · (-)·	••
	LT	1.00	228	1,600	0.143 *	V/C:	0.465
Northbound	RT	0.00	165	0	0.000	Lost Time:	0.100
	TH	3.00	355	4,800	0.108	ITS:	0.000
	LT	1.00	74	1,600	0.046 *		
Eastbound	RT	0.00	59	0	0.000	ICU:	0.565
	TH	3.00	486	4,800	0.114 *		
	LT	1.00	114	1,600	0.071	LOS:	А

Project Title: Intersection: Description:	5 - 30th	FMP EIR Street & A without Pro					
Thru Lane	: 1600	vph			N-S	Split Phase :	Ν
Left Lane		•				Split Phase :	N
Double Lt Penalty		%				(% of cycle) :	10
ITS		%				d Off (decs.) :	3
OLA Movements FF Movements							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	128	1,600	0.059	N-S(1):	0.228
Southbound	TH	2.00	710	3,200	0.059	N-S(1). N-S(2):	0.228
	LT	2.00	142	1,600	0.222	E-W(1):	0.294
Westbound	RT	0.00	53	0	0.009	E-W(1). E-W(2):	0.330
VVESIDUIIU	TH	2.00	436	3,200	0.000	∟-∨∨(∠).	0.190
	LT	1.00	153	1,600	0.135	V/C:	0.624
Northbound	RT	1.00	136	1,600	0.030	Lost Time:	0.024
Northbound	TH	2.00	446	3,200	0.139	ITS:	0.000
	LT	1.00	115	1,600	0.072 *	110.	0.000
Eastbound	RT	0.00	113	0	0.000	ICU:	0.724
Edotooding	TH	2.00	637	3,200	0.234 *	100.	0.724
	LT	1.00	68	1,600	0.043	LOS:	С
Date/Time:	PM PEA	K HOUR				1	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	60	1,600	0.016	N-S(1):	0.187
Southbound	TH	2.00	525	3,200	0.010	N-S(2):	0.107
	LT	1.00	54	1,600	0.034	E-W(1):	0.240
Westbound	RT	0.00	81	0	0.000	E-W(2):	0.258 *
	TH	2.00	603	3,200	0.214 *	L VV(2).	0.200
	LT	1.00	174	1,600	0.109	V/C:	0.498
Northbound	RT	1.00	122	1,600	0.022	Lost Time:	0.100
	TH	2.00	488	3,200	0.153	ITS:	0.000
	LT	1.00	122	1,600	0.076 *		0.000
Eastbound	RT	0.00	123	0	0.000	ICU:	0.598
	TH	2.00	352	3,200	0.148		
	LT	1.00	70	1,600	0.044 *	LOS:	А

06/07/	/201	8
--------	------	---

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	۰¥		- 11	1	- ኘ	- † †
Traffic Vol, veh/h	15	19	818	19	21	701
Future Vol, veh/h	15	19	818	19	21	701
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	0	100	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	88	88	88	88	88	88
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	17	22	930	22	24	797

Major/Minor	Minor1	Μ	lajor1	Ν	lajor2		
Conflicting Flow All	1377	465	0	0	952	0	
Stage 1	930	-	-	-	-	-	
Stage 2	447	-	-	-	-	-	
Critical Hdwy	6.84	6.94	-	-	4.14	-	
Critical Hdwy Stg 1	5.84	-	-	-	-	-	
Critical Hdwy Stg 2	5.84	-	-	-	-	-	
Follow-up Hdwy	3.52	3.32	-	-	2.22	-	
Pot Cap-1 Maneuver	136	544	-	-	717	-	
Stage 1	344	-	-	-	-	-	
Stage 2	611	-	-	-	-	-	
Platoon blocked, %			-	-		-	
Mov Cap-1 Maneuver	132	544	-	-	717	-	
Mov Cap-2 Maneuver	132	-	-	-	-	-	
Stage 1	333	-	-	-	-	-	
Stage 2	611	-	-	-	-	-	

Approach	WB	NB	SB
HCM Control Delay, s	23.9	0	0.3
HCM LOS	С		

Minor Lane/Major Mvmt	NBT	NBRWBL	n1 SBL	SBT	
Capacity (veh/h)	-	- 2	29 717	-	
HCM Lane V/C Ratio	-	- 0.1	69 0.033	-	
HCM Control Delay (s)	-	- 23	3.9 10.2	-	
HCM Lane LOS	-	-	C B	-	
HCM 95th %tile Q(veh)	-	- (0.6 0.1	-	

Intersection

Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		- 11	1	ľ	^
Traffic Vol, veh/h	9	18	700	23	25	693
Future Vol, veh/h	9	18	700	23	25	693
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	0	100	-
Veh in Median Storage	,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	10	19	745	24	27	737

Major/Minor	Minor1	Ν	lajor1	Ν	lajor2	
Conflicting Flow All	1168	373	0	0	769	0
Stage 1	745	-	-	-	-	-
Stage 2	423	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	186	624	-	-	841	-
Stage 1	430	-	-	-	-	-
Stage 2	629	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuve	r 180	624	-	-	841	-
Mov Cap-2 Maneuve	r 180	-	-	-	-	-
Stage 1	416	-	-	-	-	-
Stage 2	629	-	-	-	-	-

Approach	WB	NB	SB
HCM Control Delay, s	16.5	0	0.3
HCM LOS	С		

Vinor Lane/Major Mvmt	NBT	NBRWBLn1	SBL	SBT
Capacity (veh/h)	-	- 342	841	-
HCM Lane V/C Ratio	-	- 0.084	0.032	-
HCM Control Delay (s)	-	- 16.5	9.4	-
HCM Lane LOS	-	- C	А	-
HCM 95th %tile Q(veh)	-	- 0.3	0.1	-

Project Title: Intersection: Description:	7 - 30th	FMP EIR Street & A without Pro					
Thru Lar	ne: 1600	vph			N-S	Split Phase :	Ν
Left Lar		•				Split Phase :	Ν
Double Lt Penal	,	%				(% of cycle) :	10
IT	S: 0	%			V/C Round	d Off (decs.) :	3
OLA Movement FF Movemen							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	151	1,600	0.069	N-S(1):	0.273 *
Southbound	TH	2.00	438	3,200	0.009	N-S(1). N-S(2):	0.273
	LT	2.00	157	2,880	0.055 *	E-W(1):	0.226
Westbound	RT	0.00	287	0	0.000	E-W(1):	0.220
Westbound	TH	3.00	482	3,200	0.240 *	∟-vv(∠).	0.201
	LT	2.00	58	2,880	0.020	V/C:	0.564
Northbound	RT	1.00	159	1,600	0.020	Lost Time:	0.100
Northbound	TH	2.00	698	3,200	0.218 *	ITS:	0.000
	LT	2.00	262	2,880	0.091	110.	0.000
Eastbound	RT	0.00	191	0	0.000	ICU:	0.664
	TH	3.00	800	4,800	0.206		
	LT	2.00	146	2,880	0.051 *	LOS:	В
Date/Time:	PM PEA	K HOUR				1	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
	БТ	4.00	100	4 000	0.054		0.050 *
Southbound	RT TH	1.00 2.00	109	1,600	0.051 0.171	N-S(1):	0.252 *
	LT	2.00	546 247	3,200 2,880	0.171	N-S(2): E-W(1):	0.223 0.184
Westbound	RT	0.00	172	2,000	0.000	E-W(1). E-W(2):	0.184
AA CSIDOUIIO	TH	0.00 3.00	578	4,800	0.000 *	└ ⁻♥♥(∠).	0.190
	LT	2.00	115	2,880	0.040	V/C:	0.442
Northbound	RT	1.00	115	1,600	0.040	Lost Time:	0.100
	TH	2.00	532	3,200	0.166 *	ITS:	0.000
	LT	2.00	149	2,880	0.052		0.000
Eastbound	RT	0.00	168	0	0.000	ICU:	0.542
	TH	3.00	522	4,800	0.144		
	LT	2.00	99	2,880	0.034 *	LOS:	А

Project Title: Intersection: Description:	8 - 30th	FMP EIR Street & A without Pro	venue K-8 oject				
Thru Lar	Split Phase :	Ν					
Left Lar		•				Split Phase :	N
Double Lt Penal						(% of cycle) :	10
		%				d Off (decs.) :	3
OLA Movement FF Movemen						(<i>, ,</i>	
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	54	1,600	0.004	N-S(1):	0.321 *
oounoouna	TH	2.00	549	3,200	0.172	N-S(2):	0.189
	LT	1.00	108	1,600	0.068 *	E-W(1):	0.100 *
Westbound	RT	0.00	138	1,600	0.086	E-W(2):	0.176
Vicoloodiid	TH	2.00	89	1,600	0.056	L W(2).	0.140
	LT	1.00	87	1,600	0.054 *	V/C:	0.496
Northbound	RT	1.00	88	1,600	0.028	Lost Time:	0.100
Hortingound	TH	2.00	809	3,200	0.253 *	ITS:	0.000
	LT	1.00	27	1,600	0.017		0.000
Eastbound	RT	1.00	37	1,600	0.015	ICU:	0.596
	TH	1.00	194	1,600	0.121 *		
	LT	1.00	96	1,600	0.060	LOS:	А
Date/Time:	PM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	81	1,600	0.030	N-S(1):	0.250 *
Southbound	TH	2.00	616	3,200	0.030	N-S(1). N-S(2):	0.250
	LT	1.00	72	1,600	0.045 *	E-W(1):	0.133
Westbound	RT	0.00	119	0	0.040	E-W(2):	0.153 *
	TH	2.00	240	3,200	0.000 *	L VV(<i>L</i>).	0.100
	LT	1.00	125	1,600	0.078	V/C:	0.403
Northbound	RT	1.00	128	1,600	0.041	Lost Time:	0.100
	TH	2.00	657	3,200	0.205 *	ITS:	0.000
	LT	1.00	57	1,600	0.036		
Eastbound	RT	1.00	63	1,600	0.022	ICU:	0.503
	TH	1.00	88	1,600	0.055		
	LT	1.00	66	1,600	0.041 *	LOS:	А

Thru Lane: 1600 vph N-S Split Phase :: N Left Lane: 1600 vph E-W Split Phase :: N Double Lt Penalty: 10 % Lost Time (% of cycle) :: 10 ITS: 0 % V/C Round Off (decs.) :: 3 OLA Movements : FF Movements:
Left Lane: 1600 vph E-W Split Phase : N Double Lt Penalty: 10 % Lost Time (% of cycle) : 10 ITS: 0 % V/C Round Off (decs.) : 3 OLA Movements : FF Movements: ************************************
ITS: 0 % V/C Round Off (decs.): 3 OLA Movements: FF Movements: 3 Date/Time: AM PEAK HOUR CAPACITY V/C ICU ANALYSIS Southbound RT 1.00 144 1,600 0.028 N-S(1): 0.107 Southbound RT 1.00 131 1,600 0.028 N-S(2): 0.113 * LT 1.00 21 1,600 0.013 E-W(1): 0.292 E-W(1): 0.292 Westbound RT 1.00 37 1,600 0.013 E-W(2): 0.334 * Northbound RT 1.00 129 1,600 0.048 V/C: 0.447 Northbound RT 1.00 129 1,600 0.031 * E-W(2): 0.334 * Eastbound RT 0.00 121 0 0.000 ITS: 0.000 TH 3.00 972 4,800 0.228 LOS: A LT 1.00 200 1,600 0.125 * LOS: A
OLA Movements : FF Movements: AM PEAK HOUR Date/Time: AM PEAK HOUR APPROACH MVMT LANES VOLUME CAPACITY V/C ICU ANALYSIS Southbound RT 1.00 144 1,600 0.028 N-S(1): 0.107 Southbound RT 1.00 131 1,600 0.082 * ICU ANALYSIS LT 1.00 21 1,600 0.013 E-W(1): 0.202 Westbound RT 1.00 37 1,600 0.017 E-W(2): 0.334 * Morthbound RT 1.00 129 1,600 0.048 U/C: 0.447 Northbound RT 1.00 129 1,600 0.094 ITS: 0.000 TH 1.00 121 0 0.000 ITS: 0.000 ITS: 0.000 ITS: 0.000 ICU: 0.547 LT 1.00 200 1,600 0.125 * LOS: A
FF Movements: AM PEAK HOUR APPROACH MVMT LANES VOLUME CAPACITY V/C ICU ANALYSIS Southbound RT 1.00 144 1,600 0.028 N-S(1): 0.107 Muther TH 1.00 131 1,600 0.082 * N-S(2): 0.113 * LT 1.00 21 1,600 0.013 E-W(1): 0.292 * Westbound RT 1.00 37 1,600 0.017 E-W(2): 0.334 * Northbound RT 1.00 129 1,600 0.048 U/C: 0.447 Lost Time: 0.100 151 1,600 0.048 U/C: 0.447 Lost Time: 0.100 151 1,600 0.031 * U/C: 0.447 Lost Time: 0.100 129 1,600 0.031 * U/C: 0.447 Lost Time: 0.100 151 1,600 0.031 * U/C: 0.447
APPROACH MVMT LANES VOLUME CAPACITY V/C ICU ANALYSIS Southbound RT 1.00 144 1,600 0.028 N-S(1): 0.107 TH 1.00 131 1,600 0.082 * N-S(2): 0.113 * LT 1.00 21 1,600 0.013 E-W(1): 0.292 Westbound RT 1.00 37 1,600 0.017 E-W(2): 0.334 * Morthbound RT 1.00 103 1,600 0.004 V/C: 0.447 Northbound RT 1.00 151 1,600 0.094 Lost Time: 0.100 TH 1.00 151 1,600 0.094 ITS: 0.000 LT 1.00 49 1,600 0.031 * ICU: 0.547 Eastbound RT 0.00 121 0 0.000 ICU: 0.547 LT 1.00 200 1,600 0.125 * LOS:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Westbound RT 1.00 37 1,600 0.017 E-W(2): 0.334 * TH 2.00 669 3,200 0.209 * V/C: 0.447 Northbound RT 1.00 129 1,600 0.048 V/C: 0.447 Northbound RT 1.00 151 1,600 0.094 ITS: 0.100 LT 1.00 49 1,600 0.031 * Lost Time: 0.100 Eastbound RT 0.00 121 0 0.000 ICU: 0.547 TH 3.00 972 4,800 0.228 LOS: A
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
LT 1.00 103 1,600 0.064 V/C: 0.447 Northbound RT 1.00 129 1,600 0.048 Lost Time: 0.100 TH 1.00 151 1,600 0.094 ITS: 0.000 LT 1.00 49 1,600 0.031 * ICU: 0.547 Eastbound RT 0.00 121 0 0.000 ICU: 0.547 LT 1.00 200 1,600 0.125 * LOS: A
Northbound RT 1.00 129 1,600 0.048 Lost Time: 0.100 TH 1.00 151 1,600 0.094 ITS: 0.000 LT 1.00 49 1,600 0.031 * ICU: 0.547 Eastbound RT 0.00 121 0 0.000 ICU: 0.547 LT 1.00 200 1,600 0.125 * LOS: A
TH 1.00 151 1,600 0.094 ITS: 0.000 LT 1.00 49 1,600 0.031 * ICU: 0.547 Eastbound RT 0.00 121 0 0.000 ICU: 0.547 TH 3.00 972 4,800 0.228 LOS: A
LT 1.00 49 1,600 0.031 * Eastbound RT 0.00 121 0 0.000 TH 3.00 972 4,800 0.228 LT LT 1.00 200 1,600 0.125 * LOS: A
Eastbound RT 0.00 121 0 0.000 ICU: 0.547 TH 3.00 972 4,800 0.228 LT 1.00 200 1,600 0.125 * LOS: A
TH3.009724,8000.228LT1.002001,6000.125 *LOS:A
LT 1.00 200 1,600 0.125 * LOS: A
Date/Time: PM PEAK HOUR
APPROACH MVMT LANES VOLUME CAPACITY V/C ICU ANALYSIS
Southbound RT 1.00 87 1,600 0.003 N-S(1): 0.154 *
Southbound RT 1.00 87 1,600 0.003 N-S(1): 0.154 * TH 1.00 158 1,600 0.099 N-S(2): 0.122
LT 1.00 40 1,600 0.025 * E-W(1): 0.249
Westbound RT 1.00 68 1,600 0.020 E-W(1): 0.249 Westbound RT 1.00 68 1,600 0.030 E-W(2): 0.345 *
TH 2.00 777 3,200 0.243 *
LT 1.00 209 1,600 0.131 V/C: 0.499
Northbound RT 1.00 124 1,600 0.101 Lost Time: 0.100
TH 1.00 206 1,600 0.129 * ITS: 0.000
LT 1.00 36 1,600 0.023
Eastbound RT 0.00 54 0 0.000 ICU: 0.599
TH 3.00 514 4,800 0.118
LT 1.00 163 1,600 0.102 * LOS: A

Project Title: Intersection: Description:	10 - 25t	FMP EIR h Street & / without Pro	Avenue J-8 oject				
Thru Lar	ne: 1600	vph			N-S	Split Phase :	Ν
Left Lar		•				, Split Phase :	Ν
Double Lt Penal		%				, (% of cycle) :	10
		%				d Off (decs.) :	3
OLA Movement FF Movemen							
Date/Time:	AM PEA	AK HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
0 11 1	57		00	0	0.000		0 000 t
Southbound	RT	0.00	20	0	0.000	N-S(1):	0.228 *
	TH	2.00	176	3,200	0.061	N-S(2):	0.112
<u></u>	LT	1.00	232	1,600	0.145 *	E-W(1):	0.264 *
Westbound	RT	0.00	76	0	0.000	E-W(2):	0.229
	TH	2.00	584	3,200	0.206	240	0.400
<u> </u>	LT	1.00	23	1,600	0.014 *	V/C:	0.492
Northbound	RT	0.00	102	0	0.000	Lost Time:	0.100
	TH	2.00	164	3,200	0.083 *	ITS:	0.000
	LT	1.00	81	1,600	0.051		
Eastbound	RT	0.00	57	0	0.000	ICU:	0.592
	TH	2.00	743	3,200	0.250 *		
	LT	1.00	36	1,600	0.023	LOS:	A
Date/Time:	PM PEA	AK HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	31	0	0.000	N-S(1):	0.173 *
Southbound	TH	2.00	232	3,200	0.000	N-S(1). N-S(2):	0.173
	LT	1.00	161	1,600	0.002	E-W(1):	0.103
Westbound	RT	0.00	161	0	0.000	E-W(1). E-W(2):	0.134
vvestouriu	TH	2.00	693	3,200	0.000 *	⊏-vv(∠).	0.205
	LT					V/C:	0.456
Northbound	RT	1.00	<u>49</u> 36	1,600 0	0.031		0.456
						Lost Time:	
	TH	2.00	193	3,200	0.072 *	ITS:	0.000
Faathourd		1.00	33	1,600	0.021		0 550
Eastbound	RT	0.00	26	0	0.000	ICU:	0.556
	TH	2.00	369	3,200	0.123		•
	LT	1.00	26	1,600	0.016 *	LOS:	A

Project Title: Intersection: Description:	11 - 25tl	FMP EIR h Street & / without Pro					
Thru Lan		•				Split Phase :	Ν
Left Lan						Split Phase :	Ν
Double Lt Penal	,	%				(% of cycle) :	10
IT OLA Movements FF Movement	s:	%			V/C Round	d Off (decs.) :	3
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	47	1,600	0.010	N-S(1):	0.138 *
Couribound	TH	1.00	116	1,600	0.073	N-S(2):	0.082
	LT	1.00	104	1,600	0.065 *	E-W(1):	0.341 *
Westbound	RT	1.00	47	1,600	0.000	E-W(2):	0.282
The other official and a second se	TH	2.00	781	3,200	0.244	(_).	0.202
	LT	1.00	36	1,600	0.023 *	V/C:	0.479
Northbound	RT	0.00	92	0	0.000	Lost Time:	0.100
	TH	2.00	142	3,200	0.073 *	ITS:	0.000
	LT	1.00	14	1,600	0.009		
Eastbound	RT	1.00	31	1,600	0.015	ICU:	0.579
	TH	2.00	1,018	3,200	0.318 *		
	LT	1.00	61	1,600	0.038	LOS:	А
Date/Time:	PM PEA	K HOUR				L	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	55	1,600	0.019	N-S(1):	0.103
Southbound	TH	1.00	157	1,600	0.019	N-S(2):	0.103
	LT	1.00	78	1,600	0.049	E-W(1):	0.303 *
Westbound	RT	1.00	74	1,600	0.022	E-W(2):	0.282
The consecution	TH	2.00	805	3,200	0.252	(_).	0.202
	LT	1.00	57	1,600	0.036 *	V/C:	0.417
Northbound	RT	0.00	53	0	0.000	Lost Time:	0.100
	TH	2.00	121	3,200	0.054	ITS:	0.000
	LT	1.00	25	1,600	0.016 *		
Eastbound	RT	1.00	21	1,600	0.005	ICU:	0.517
	TH	2.00	854	3,200	0.267 *		
	LT	1.00	48	1,600	0.030	LOS:	А

Г

Project Title:	AVCCD FMP EIR
Intersection:	12 - SR-14 SB Off Ramp & Avenue J
Description:	Future without Project

Thru Lane:	1600 vph	N-S Split Phase :	Ν
Left Lane:	1600 vph	E-W Split Phase :	Ν
Double Lt Penalty:	10 %	Lost Time (% of cycle) :	10
ITS:	0 %	V/C Round Off (decs.) :	3
OLA Movements :			
FF Movements:			

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	172	1,600	0.108	N-S(1):	0.121 *
	TH	0.00	0	0	0.000	N-S(2):	0.108
	LT	1.00	193	1,600	0.121 *	E-W(1):	0.364 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.238
	TH	2.00	762	3,200	0.238		
	LT	0.00	0	0	0.000 *	V/C:	0.485
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.585
	TH	2.00	1,164	3,200	0.364 *		
	LT	0.00	0	0	0.000	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	282	1,600	0.176 *	N-S(1):	0.098
	TH	0.00	0	0	0.000	N-S(2):	0.176 *
	LT	1.00	157	1,600	0.098	E-W(1):	0.298
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.371 *
	TH	2.00	1,187	3,200	0.371 *		
	LT	0.00	0	0	0.000	V/C:	0.547
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	0.00	0	0	0.000 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.647
	TH	2.00	955	3,200	0.298		
	LT	0.00	0	0	0.000 *	LOS:	В

Project Title: Intersection: AVCCD FMP EIR 13 - 20th Street & SR-14 NB Off Ramp Future without Project **Description:**

Thru Lane:	1600 vph	N-S Split Phase :
Left Lane:	1600 vph	E-W Split Phase :
Double Lt Penalty:	10 %	Lost Time (% of cycle) :
ITS:	0 %	V/C Round Off (decs.) :
OLA Movements :		
FF Movements:		

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.081
	TH	3.00	483	4,800	0.101 *	N-S(2):	0.101 *
	LT	0.00	0	0	0.000	E-W(1):	0.191
Westbound	RT	1.00	639	1,600	0.399 *	E-W(2):	0.399 *
	TH	0.00	0	0	0.000		
	LT	1.00	305	1,600	0.191	V/C:	0.500
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	3.00	391	4,800	0.081	ITS:	0.000
	LT	0.00	0	0	0.000 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.600
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	А

N-S Split Phase :

Ν

Ν

10

3

PM PEAK HOUR Date/Time:

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	
			VOLONIL		V/C		
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.101
	TH	3.00	897	4,800	0.187 *	N-S(2):	0.187 *
	LT	0.00	0	0	0.000	E-W(1):	0.282
Westbound	RT	1.00	543	1,600	0.339 *	E-W(2):	0.339 *
	TH	0.00	0	0	0.000		
	LT	1.00	451	1,600	0.282	V/C:	0.526
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	3.00	483	4,800	0.101	ITS:	0.000
	LT	0.00	0	0	0.000 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.626
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	В

Project Title: Intersection: Description:	14 - 20t	FMP EIR h Street & / without Pro	Avenue J-8 Dject				
Thru Lar	ne: 1600	vph			N-S	Split Phase :	Ν
Left Lar		•				Split Phase :	N
Double Lt Penal		%				(% of cycle) :	10
TI	Ś: 0	%				d Off (decs.) :	3
OLA Movement FF Movemen							
Date/Time:	AM PEA	AK HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	2.00	470	3,200	0.117	N-S(1):	0.182 *
Southbound	TH	2.00	257	3,200	0.080	N-S(1). N-S(2):	0.162
	LT	1.00	75	1,600	0.080	E-W(1):	0.158
Westbound	RT	0.00	30	0	0.047	E-W(1). E-W(2):	0.202
Vesibound	TH	2.00	452	3,200	0.000	∟-∨∨(∠).	0.212
	LT	1.00	452 120	1,600	0.075 *	V/C:	0.444
Northbound	RT	1.00	276	1,600	0.075	Lost Time:	0.444
Northbourid	TH	2.00	302	3,200	0.135	ITS:	0.000
	LT	2.00	502 65	1,600	0.094 0.041	113.	0.000
Eastbound	RT	0.00	82	0	0.041	ICU:	0.544
Eastbound	TH	2.00	62 517	3,200	0.000 *	100.	0.544
	LT	1.00	97	1,600	0.061	LOS:	А
Date/Time:	PM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Couthbound	рт	2.00	700	2 200	0 000 *	NL C(4):	0 470
Southbound	RT TH	2.00 2.00	783 435	3,200	0.222 * 0.136	N-S(1):	0.170 0.313 *
	LT	2.00	435 82	3,200 1,600	0.130	N-S(2): E-W(1):	0.313
Westbound	RT	0.00	60	0	0.000		0.300
vvestbound	TH	2.00		3,200	0.000	E-W(2):	0.270
	LT	2.00	687 307	3,200 1,600	0.233	V/C:	0.613
Northbound	RT	1.00	195	1,600	0.192	Lost Time:	0.013
	TH	2.00	382	3,200	0.020	ITS:	0.000
	LT	2.00	362 145	3,200 1,600	0.119 0.091 *	113.	0.000
Eastbound	RT	0.00	67	0	0.001	ICU:	0.713
Lasinoning	TH	2.00	279	3,200	0.000 *	100.	0.713
	LT	2.00	72	3,200 1,600	0.108	LOS:	С
		1.00	12	1,000	0.040	L03.	C

Project Title: Intersection: Description:	15 - 20t	FMP EIR h Street & / without Pro					
Thru Lar	ne: 1600	vph			N-S	Split Phase :	Ν
Left Lar		•				, Split Phase :	Ν
Double Lt Penal		%				(% of cycle) :	10
		%				d Off (decs.) :	3
OLA Movement FF Movemen							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	85	1,600	0.000	N-S(1):	0.160 *
Southbound	TH	2.00	189	3,200	0.000	N-S(1). N-S(2):	0.082
	LT	2.00	189	2,880	0.039	E-W(1):	0.082
Westbound	RT	0.00	65	0	0.000	E-W(2):	0.238 *
Westbound	TH	3.00	742	4,800	0.168 *	L-VV(Z).	0.270
	LT	1.00	84	1,600	0.053	V/C:	0.438
Northbound	RT	0.00	83	0	0.000	Lost Time:	0.400
Northbound	TH	2.00	298	3,200	0.000 *	ITS:	0.000
	LT	2.00	67	2,880	0.023	110.	0.000
Eastbound	RT	1.00	82	1,600	0.020	ICU:	0.538
Lustbound	TH	3.00	983	4,800	0.205	100.	0.000
	LT	1.00	176	1,600	0.110 *	LOS:	А
Date/Time:	PM PEA	K HOUR				1	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	116	1,600	0.021	N-S(1):	0.186 *
Southbound	TH	2.00	355	3,200	0.021	N-S(1). N-S(2):	0.180
	LT	2.00	178	2,880	0.062 *	E-W(1):	0.149
Westbound	RT	0.00	127	0	0.002	E-W(2):	0.302 *
	TH	3.00	825	4,800	0.198 *	L VV(Z).	0.002
	LT	1.00	176	1,600	0.130	V/C:	0.488
Northbound	RT	0.00	111	0	0.000	Lost Time:	0.100
	TH	2.00	287	3,200	0.124 *	ITS:	0.000
	LT	2.00	110	2,880	0.038		0.000
Eastbound	RT	1.00	66	1,600	0.022	ICU:	0.588
	TH	3.00	855	4,800	0.178		
	LT	1.00	166	1,600	0.104 *	LOS:	А

Intersection: Description:	16 - 17ti	FMP EIR n Street & / without Pro					
Thru Lane:	1600	vph			N-S	Split Phase :	Ν
Left Lane:	1600	vph			E-W	Split Phase :	N
Double Lt Penalty:	10					(% of cycle) :	10
ITS:	0	%			V/C Round	d Off (decs.) :	3
OLA Movements : FF Movements:							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
	БТ	2.00	24	2 200	0.000	N C(4).	0 454
Southbound	RT	2.00	31	3,200	0.000	N-S(1):	0.154
	TH	0.16 0.84	31	262	0.118 *	N-S(2):	0.158 *
Westbound	LT RT	0.84	158 72	1,338 0	0.118	E-W(1): E-W(2):	0.308 * 0.219
westbound						E-VV(∠):	0.219
	TH	3.00	828	4,800	0.188		0.400
N1	LT	1.00	128	1,600	0.080 *	V/C:	0.466
Northbound	RT	2.00	193	3,200	0.020	Lost Time:	0.100
	TH	0.88	50	1,404	0.036	ITS:	0.000
<u> </u>	LT	1.12	64	1,617	0.040 *		
Eastbound	RT	0.00	79	0	0.000	ICU:	0.566
	TH	3.00	1,013	4,800	0.228 *		
	LT	1.00	50	1,600	0.031	LOS:	A
Date/Time:	PM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	2.00	41	3,200	0.000	N-S(1):	0.193
Southbound	TH	0.20	46	3,200	0.000 *	N-S(2):	0.193 *
	LT	0.20	186	1,283	0.145	E-W(1):	0.198
Westbound	RT	0.00	144	0	0.000	E-W(1):	0.277
VVESIDUIIU	TH	3.00	1,030	4,800	0.245	∟-vv(∠).	0.211
	LT	3.00 1.00	237	4,800 1,600	0.245	V/C:	0.582
Northbound	RT	2.00	237	3,200	0.148	Lost Time:	0.582
	TH	2.00 0.82	240 62	3,200 1,305	0.003	ITS:	0.000
				1,305	0.048	113.	0.000
Footbound	LT RT	1.18	<u>90</u> 99	,			0 600
Eastbound		0.00		0	0.000 0.236 *	ICU:	0.682
	TH	3.00	1,033	4,800	0.236 *	1.00	D
	LT	1.00	51	1,600	0.032	LOS:	В

Г

Project Title: Intersection: Description:	17 - SR-	FMP EIR 14 SB Ran without Pro	nps & Avenue oject	к			
Thru La	ine: 1600	vph			N-S	Split Phase :	Ν
Left La		•				Split Phase :	N
Double Lt Pena		%				(% of cycle) :	10
		%				d Off (decs.) :	3
OLA Movemen	nts :					()	
FF Moveme	nts: EBR	· ,					
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	рт	1 22	169	0 100	0.070	N 6(1)	0.000 *
Soumbound	RT TH	1.33 0.00	168	2,122	0.079 0.000	N-S(1):	0.088 *
	LT	0.00 1.67	0 212	0 2,410	0.000 *	N-S(2): E-W(1):	0.079 0.291 *
Westbound	RT	1.07	288	1,600	0.088	E-W(1). E-W(2):	0.291
Vesibound	TH	3.00	288 926	4,800	0.180	⊏-vv(∠).	0.195
	LT	0.00	0	4,000 0	0.000 *	V/C:	0.379
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000 *	ITS:	0.000
	LT	0.00	0	0	0.000		0.000
Eastbound	RT	0.00	410	0	0.000	ICU:	0.479
	TH	3.00	985	4,800	0.291 *		
	LT	0.00	0	0	0.000	LOS:	А
Date/Time:	PM PEA	K HOUR				I	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
		4 40	22 (0.070			0 (0 0 ±
Southbound	RT	1.48	221	2,373	0.093	N-S(1):	0.103 *
	TH	0.00	0	0	0.000	N-S(2):	0.093
Westbound		1.52	226	2,184	0.103 *	E-W(1):	0.307
Westbound	RT TH	1.00 3.00	540 1,257	1,600 4,800	0.338 * 0.262	E-W(2):	0.338 *
	LT	0.00	1,257	4,800 0	0.202	V/C:	0.441
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.441
	TH	0.00	0	0	0.000 *	ITS:	0.000
	LT	0.00	0	0	0.000	110.	0.000
Eastbound	RT	0.00	481	0	0.000	ICU:	0.541
Lactoonid	TH	3.00	993	4,800	0.307	100.	0.041
	LT	0.00	0	4,000 0	0.000 *	LOS:	А
	L 1	0.00	Ŭ	0	0.000	200.	<i>/</i> \

Project Title:AVCCD FMP EIRIntersection:18 - 15th St/SR-14 NB Ramps & Ave KDescription:Future without Project

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	
AFFROACH		LANES	VOLUME	CAFACITT	V/C		L1313
Southbound	RT	1.92	231	3,067	0.037	N-S(1):	0.250 *
	TH	0.08	10	133	0.075	N-S(2):	0.183
	LT	2.00	199	2,880	0.069 *	E-W(1):	0.176
Westbound	RT	1.00	210	1,600	0.131	E-W(2):	0.245 *
	TH	3.00	811	4,800	0.169 *		
	LT	0.00	0	0	0.000	V/C:	0.495
Northbound	RT	1.41	409	2,259	0.181	Lost Time:	0.100
	TH	1.59	460	2,541	0.181 *	ITS:	0.000
	LT	2.00	312	2,880	0.108		
Eastbound	RT	1.00	101	1,600	0.009	ICU:	0.595
	TH	3.00	847	4,800	0.176		
	LT	2.00	219	2,880	0.076 *	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.91	471	3,057	0.127	N-S(1):	0.293 *
	TH	0.09	22	143	0.154	N-S(2):	0.289
	LT	2.00	353	2,880	0.123 *	E-W(1):	0.201
Westbound	RT	1.00	228	1,600	0.143	E-W(2):	0.289 *
	TH	3.00	1,127	4,800	0.235 *		
	LT	0.00	0	0	0.000	V/C:	0.582
Northbound	RT	1.52	413	2,432	0.170	Lost Time:	0.100
	TH	1.48	402	2,368	0.170 *	ITS:	0.000
	LT	2.00	388	2,880	0.135		
Eastbound	RT	1.00	108	1,600	0.000	ICU:	0.682
	TH	3.00	963	4,800	0.201		
	LT	2.00	156	2,880	0.054 *	LOS:	В
				_,			

Project Title: Intersection: Description:	1 - 40th	FMP EIR Street & A y with Proje					
Thru Land Left Land Double Lt Penalt	e: 1600 y: 10	•			E-W Lost Time	Split Phase : Split Phase : (% of cycle) : d Off (decs.) :	N N 10 3
OLA Movements FF Movements	:	70			V/C Round	d Oll (decs.) .	3
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT TH LT	0.08 0.92 1.00	15 173 81	128 1,472 1,600	0.108 0.118 * 0.051	N-S(1): N-S(2): E-W(1):	0.127 0.180 * 0.296 *
Westbound	RT TH LT	1.00 1.00 1.00 1.00	45 307 42	1,600 1,600 1,600 1,600	0.003 0.192 0.026 *	E-W(2): V/C:	0.211
Northbound	RT TH LT	1.00 2.00 1.00	143 184 99	1,600 3,200 1,600	0.076 0.058 0.062 *	Lost Time: ITS:	0.100 0.000
Eastbound	RT TH LT	0.00 2.00 1.00	99 766 30	0 3,200 1,600	0.000 0.270 * 0.019	ICU: LOS:	0.576 A
Date/Time:	PM PEA	K HOUR				1	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT TH LT	0.05 0.95 1.00	11 202 50	83 1,517 1,600	0.126 0.133 * 0.031	N-S(1): N-S(2): E-W(1):	0.088 0.174 * 0.191
Westbound	RT TH LT	1.00 1.00 1.00	48 432 96	1,600 1,600 1,600	0.014 0.270 * 0.060	E-W(2): V/C:	0.285 * 0.459
Northbound	RT TH LT	1.00 2.00 1.00	79 182 65	1,600 3,200 1,600	0.019 0.057 0.041 *	Lost Time: ITS:	0.100 0.000
Eastbound	RT TH LT	0.00 2.00 1.00	38 381 24	0 3,200 1,600	0.000 0.131 0.015 *	ICU: LOS:	0.559 A

г

Intersection	
section	27.0
ersection Delay, s/veh	27.8
Intersection LOS	D

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	¢Î		٦	el 🗧		۳.	•	1	٦	eî.	
Traffic Vol, veh/h	15	309	30	10	244	51	20	16	3	202	39	64
Future Vol, veh/h	15	309	30	10	244	51	20	16	3	202	39	64
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	18	377	37	12	298	62	24	20	4	246	48	78
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			2			2			2		
HCM Control Delay	37.1			28.3			12.5			18.6		
HCM LOS	E			D			В			С		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	91%	0%	83%	0%	38%	
Vol Right, %	0%	0%	100%	0%	9%	0%	17%	0%	62%	
Sign Control	Stop									
Traffic Vol by Lane	20	16	3	15	339	10	295	202	103	
LT Vol	20	0	0	15	0	10	0	202	0	
Through Vol	0	16	0	0	309	0	244	0	39	
RT Vol	0	0	3	0	30	0	51	0	64	
Lane Flow Rate	24	20	4	18	413	12	360	246	126	
Geometry Grp	8	8	8	8	8	8	8	8	8	
Degree of Util (X)	0.064	0.048	0.008	0.04	0.842	0.027	0.743	0.569	0.256	
Departure Headway (Hd)	9.467	8.948	8.221	7.906	7.335	8.07	7.438	8.309	7.346	
Convergence, Y/N	Yes									
Сар	377	398	433	452	492	443	486	434	487	
Service Time	7.262	6.743	6.016	5.666	5.094	5.834	5.201	6.073	5.11	
HCM Lane V/C Ratio	0.064	0.05	0.009	0.04	0.839	0.027	0.741	0.567	0.259	
HCM Control Delay	12.9	12.2	11.1	11	38.3	11.1	28.9	21.6	12.6	
HCM Lane LOS	В	В	В	В	E	В	D	С	В	
HCM 95th-tile Q	0.2	0.2	0	0.1	8.5	0.1	6.2	3.4	1	

Intersection	
Intersection Delay, s/veh	13.1
Intersection LOS	В

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	¢Î		٦	ef 👘		۳.	•	1	٦.	4Î	
Traffic Vol, veh/h	20	186	12	2	336	34	9	12	14	34	8	15
Future Vol, veh/h	20	186	12	2	336	34	9	12	14	34	8	15
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	198	13	2	357	36	10	13	15	36	9	16
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			2			2			2		
HCM Control Delay	11			15.2			9.3			9.8		
HCM LOS	В			С			А			А		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	94%	0%	91%	0%	35%	
Vol Right, %	0%	0%	100%	0%	6%	0%	9%	0%	65%	
Sign Control	Stop									
Traffic Vol by Lane	9	12	14	20	198	2	370	34	23	
LT Vol	9	0	0	20	0	2	0	34	0	
Through Vol	0	12	0	0	186	0	336	0	8	
RT Vol	0	0	14	0	12	0	34	0	15	
Lane Flow Rate	10	13	15	21	211	2	394	36	24	
Geometry Grp	8	8	8	8	8	8	8	8	8	
Degree of Util (X)	0.019	0.023	0.024	0.037	0.33	0.003	0.579	0.071	0.041	
Departure Headway (Hd)	7.112	6.605	5.895	6.187	5.642	5.864	5.298	7.057	6.084	
Convergence, Y/N	Yes									
Сар	506	545	611	573	630	605	673	511	592	
Service Time	4.815	4.308	3.598	3.986	3.441	3.648	3.081	4.757	3.784	
HCM Lane V/C Ratio	0.02	0.024	0.025	0.037	0.335	0.003	0.585	0.07	0.041	
HCM Control Delay	10	9.5	8.7	9.2	11.2	8.7	15.2	10.3	9	
HCM Lane LOS	А	А	А	А	В	А	С	В	А	
HCM 95th-tile Q	0.1	0.1	0.1	0.1	1.4	0	3.7	0.2	0.1	

Project Title:AVCCD FMP EIRIntersection:3 - 32nd St/Driveway & Avenue KDescription:Existing with Project

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

		=0					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.83	24	1,324	0.000	N-S(1):	0.119 *
	TH	0.17	5	276	0.018	N-S(2):	0.042
	LT	1.00	121	1,600	0.076 *	E-W(1):	0.209
Westbound	RT	0.00	246	0	0.000	E-W(2):	0.298 *
	TH	3.00	438	3,200	0.214 *		
	LT	1.00	11	1,600	0.007	V/C:	0.417
Northbound	RT	0.70	48	1,113	0.040	Lost Time:	0.100
	TH	0.30	21	487	0.043 *	ITS:	0.000
	LT	1.00	39	1,600	0.024		
Eastbound	RT	0.00	21	0	0.000	ICU:	0.517
	TH	3.00	950	4,800	0.202		
	LT	1.00	135	1,600	0.084 *	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	
ALLINOAOLI		LANLO	VOLUNIL		V/C		
Southbound	RT	0.92	33	1,467	0.002	N-S(1):	0.096 *
	TH	0.08	3	133	0.023	N-S(2):	0.027
	LT	1.00	115	1,600	0.072 *	E-W(1):	0.139
Westbound	RT	0.00	92	0	0.000	E-W(2):	0.196 *
	TH	3.00	649	4,800	0.154 *		
	LT	1.00	33	1,600	0.021	V/C:	0.292
Northbound	RT	0.90	35	1,436	0.014	Lost Time:	0.100
	TH	0.10	4	164	0.024 *	ITS:	0.000
	LT	1.00	6	1,600	0.004		
Eastbound	RT	0.00	7	0	0.000	ICU:	0.392
	TH	3.00	557	4,800	0.118		
	LT	1.00	67	1,600	0.042 *	LOS:	А

Project Title: Intersection: Description:	4 - 30th	FMP EIR Street & A g with Proje						
Thru Lane: 1600 vph N-S Split Phase : N								
Left Lar		•				, Split Phase :	Ν	
Double Lt Penal		%				(% of cycle) :	10	
IŢ	S: 0	%			V/C Round	d Off (decs.) :	3	
OLA Movement FF Movemen								
Date/Time:	AM PEA	K HOUR						
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS	
Southbound	RT	1.00	104	1,600	0.032	N-S(1):	0.123	
Southbound	TH	2.00	444	3,200	0.139 *	N-S(2):	0.125	
	LT	1.00	54	1,600	0.034	E-W(1):	0.358 *	
Westbound	RT	1.00	33	1,600	0.004	E-W(2):	0.219	
Westbound	TH	2.00	488	3,200	0.153	L W(2).	0.210	
	LT	1.00	224	1,600	0.140 *	V/C:	0.598	
Northbound	RT	1.00	137	1,600	0.016	Lost Time:	0.100	
i torting ourig	TH	2.00	286	3,200	0.089	ITS:	0.000	
	LT	1.00	161	1,600	0.101 *		0.000	
Eastbound	RT	0.00	211	0	0.000	ICU:	0.698	
	TH	3.00	833	4,800	0.218 *			
	LT	1.00	106	1,600	0.066	LOS:	В	
Date/Time:	PM PEA	K HOUR				L		
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS	
Southbound	RT	1.00	134	1,600	0.057	N-S(1):	0.095	
Southbound	TH	2.00	282	3,200	0.037	N-S(1). N-S(2):	0.095	
	LT	1.00	15	1,600	0.000	E-W(1):	0.259 *	
Westbound	RT	1.00	36	1,600	0.000	E-W(2):	0.232	
W COLDOUND	TH	2.00	568	3,200	0.178	L W(2).	0.202	
	LT	1.00	250	1,600	0.156 *	V/C:	0.391	
Northbound	RT	1.00	181	1,600	0.035	Lost Time:	0.100	
	TH	2.00	275	3,200	0.086	ITS:	0.000	
	LT	1.00	71	1,600	0.044 *		0.000	
Eastbound	RT	0.00	59	0	0.000	ICU:	0.491	
	TH	3.00	433	4,800	0.103 *			
	LT	1.00	86	1,600	0.054	LOS:	А	

Project Title: Intersection: Description:	5 - 30th	FMP EIR Street & A g with Proje						
Thru Lane: 1600 vph N-S Split Phase :								
Left Lar		•				Split Phase :	N N	
Double Lt Penal		%				(% of cycle) :	10	
		%				d Off (decs.) :	3	
OLA Movement FF Movemen								
Date/Time:	AM PEA	K HOUR						
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS	
Southbound	RT	1.00	129	1,600	0.060	N S(1)	0.222	
Southbound	TH	2.00	720	3,200	0.060	N-S(1): N-S(2):	0.222 *	
	LT	2.00	138	3,200 1,600	0.225	E-W(1):	0.286 *	
Westbound	RT	0.00	49	0	0.000	E-W(1). E-W(2):	0.280	
Westbound	TH	2.00	49 396	3,200	0.000	⊏-vv(∠).	0.160	
	LT	2.00	390 177		0.139	V/C:	0.574	
Northbound	RT	1.00	128	1,600 1,600	0.025	Lost Time:	0.574	
Northbound	TH	2.00	434	3,200	0.025	ITS:	0.100	
	LT	2.00	434 100		0.136	115.	0.000	
Eastbound	RT	0.00	100	1,600 0	0.003	ICU:	0.674	
Eastbound	TH	2.00	461		0.000 *	100.	0.674	
	LT	1.00	65	3,200 1,600	0.041	LOS:	В	
Date/Time:	PM PEA	K HOUR						
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS	
Southbound	RT	1.00	54	1,600	0.012	N-S(1):	0.175	
Southbound	TH	2.00	531	3,200	0.012	N-S(1). N-S(2):	0.175	
	LT	1.00	50	1,600	0.031	E-W(1):	0.227	
Westbound	RT	0.00	68	0	0.000	E-W(1):	0.199	
Westbound	TH	2.00	430	3,200	0.156	L VV(2).	0.100	
	LT	1.00	181	1,600	0.113 *	V/C:	0.443	
Northbound	RT	1.00	122	1,600	0.020	Lost Time:	0.100	
Northbound	TH	2.00	461	3,200	0.144	ITS:	0.000	
	LT	1.00	98	1,600	0.061 *		0.000	
Eastbound	RT	0.00	83	0	0.000	ICU:	0.543	
	TH	2.00	245	3,200	0.103 *	100.	0.040	
	LT	1.00	69	1,600	0.043	LOS:	А	
	L 1	1.00	00	1,000	0.0 10	200.		

Project Title:AVCCD FMP EIRIntersection:6 - 30th Street & Ave J-12/New DrivewayDescription:Existing with Project

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	208	0	0.000	N-S(1):	0.170
	TH	3.00	662	4,800	0.181 *	N-S(2):	0.302 *
	LT	1.00	17	1,600	0.011	E-W(1):	0.007
Westbound	RT	1.00	15	1,600	0.004 *	E-W(2):	0.022 *
	TH	0.00	0	0	0.000		
	LT	1.00	11	1,600	0.007	V/C:	0.324
Northbound	RT	0.00	15	0	0.000	Lost Time:	0.100
	TH	3.00	750	4,800	0.159	ITS:	0.000
	LT	1.00	194	1,600	0.121 *		
Eastbound	RT	1.00	64	1,600	0.000	ICU:	0.424
	TH	0.00	0	0	0.000		
	LT	1.00	29	1,600	0.018 *	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
/					.,		
Southbound	RT	0.00	117	0	0.000	N-S(1):	0.145
	TH	3.00	635	4,800	0.157 *	N-S(2):	0.241 *
	LT	1.00	21	1,600	0.013	E-W(1):	0.067 *
Westbound	RT	1.00	14	1,600	0.002	E-W(2):	0.043
	TH	0.00	0	0	0.000		
	LT	1.00	5	1,600	0.003 *	V/C:	0.308
Northbound	RT	0.00	19	0	0.000	Lost Time:	0.100
	TH	3.00	615	4,800	0.132	ITS:	0.000
	LT	1.00	134	1,600	0.084 *		
Eastbound	RT	1.00	169	1,600	0.064 *	ICU:	0.408
	TH	0.00	0	0	0.000		
	LT	1.00	66	1,600	0.041	LOS:	A

Project Title: Intersection: Description:	7 - 30th	FMP EIR Street & A y with Proje					
Thru Lan	ne: 1600	vph			N-S	Split Phase :	Ν
Left Lan		•				Split Phase :	Ν
Double Lt Penal	ty: 10	%			Lost Time	(% of cycle) :	10
IT	'S: 0	%			V/C Round	d Off (decs.) :	3
OLA Movement FF Movement							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	171	1,600	0.079	N-S(1):	0.273 *
Southbound	TH	2.00	411	3,200	0.079	N-S(1). N-S(2):	0.273
	LT	2.00	172	2,880	0.120	E-W(1):	0.224
Westbound	RT	0.00	325	0	0.000	E-W(1):	0.213
VVESIDOUTIU	TH	3.00	513	3,200	0.262 *	L-VV(<i>Z</i>).	0.510
	LT	2.00	57	2,880	0.020	V/C:	0.591
Northbound	RT	1.00	154	1,600	0.020	Lost Time:	0.391
Northbound	TH	2.00	681	3,200	0.000 *	ITS:	0.000
	LT	2.00	277	2,880	0.213	113.	0.000
Eastbound	RT	0.00	178	2,000	0.000	ICU:	0.691
Eastbound	TH	3.00	747	4,800	0.000	100.	0.091
	LT	2.00	160	2,880	0.056 *	LOS:	В
Date/Time:	PM PEA	K HOUR				1	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	132	1,600	0.062	N 8(1)	0.232 *
Southbound	TH	2.00	506	3,200	0.062	N-S(1): N-S(2):	0.232
	LT	2.00	255	2,880	0.089 *	E-W(1):	0.211
Westbound	RT	0.00	214	0	0.000	E-W(1):	0.175
Vicsibound	TH	3.00	535	4,800	0.156 *	L-VV(Z).	0.100
	LT	2.00	107	2,880	0.037	V/C:	0.428
Northbound	RT	1.00	107	1,600	0.059	Lost Time:	0.420
	TH	2.00	458	3,200	0.033	ITS:	0.000
	LT	2.00	154	2,880	0.053		0.000
Eastbound	RT	0.00	164	0	0.000	ICU:	0.528
	TH	3.00	516	4,800	0.000	100.	0.020
	LT	2.00	116	2,880	0.040 *	LOS:	А

Project Title: Intersection: Description:	8 - 30th	FMP EIR Street & A g with Proje						
Thru Lane: 1600 vph N-S Split Phase :								
Left La		•				Split Phase :	N N	
Double Lt Pena		%				(% of cycle) :	10	
		%				d Off (decs.) :	3	
OLA Movemen FF Movemer								
Date/Time:	AM PEA	AK HOUR						
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS	
Southbound	RT	1.00	50	1,600	0.003	N-S(1):	0.319 *	
Obdinbound	TH	2.00	517	3,200	0.000	N-S(2):	0.173	
	LT	1.00	100	1,600	0.063 *	E-W(1):	0.173	
Westbound	RT	0.00	144	1,600	0.000	E-W(1):	0.137	
Westbound	TH	2.00	85	1,600	0.053		0.140	
	LT	1.00	83	1,600	0.053 *	V/C:	0.476	
Northbound	RT	1.00	79	1,600	0.023	Lost Time:	0.470	
Northboarta	TH	2.00	819	3,200	0.256 *	ITS:	0.000	
	LT	1.00	18	1,600	0.011		0.000	
Eastbound	RT	1.00	33	1,600	0.011	ICU:	0.576	
Lucibound	TH	1.00	168	1,600	0.105 *		0.010	
	LT	1.00	92	1,600	0.058	LOS:	А	
Date/Time:	PM PEA	K HOUR				1		
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS	
Southbound	RT	1.00	77	1,600	0.029	N-S(1):	0.229 *	
Southbound	TH	2.00	619	3,200	0.029	N-S(1). N-S(2):	0.229	
	LT	1.00	69	1,600	0.193	E-W(1):	0.220	
Westbound	RT	0.00	98	0	0.040	E-W(1):	0.125 *	
Woolboana	TH	2.00	176	3,200	0.086 *	L(_).	0.120	
	LT	1.00	112	1,600	0.070	V/C:	0.354	
Northbound	RT	1.00	115	1,600	0.037	Lost Time:	0.100	
	ТН	2.00	594	3,200	0.186 *	ITS:	0.000	
	LT	1.00	53	1,600	0.033			
Eastbound	RT	1.00	46	1,600	0.012	ICU:	0.454	
	TH	1.00	84	1,600	0.053			
	LT	1.00	62	1,600	0.039 *	LOS:	А	
				- ,				

Project Title: Intersection: Description:	9 - 25th	FMP EIR Street & A y with Proje					
Thru Lane: 1600 vph N-S Split Phase : N							
Left Lan		•				, Split Phase :	Ν
Double Lt Penal		%				(% of cycle) :	10
IT		%				d Off (decs.) :	3
OLA Movements FF Movement							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	139	1 600	0.027	N S(1)	0.103
Soumbound	TH	1.00	139	1,600 1,600	0.027	N-S(1):	0.103
	LT	1.00	20	1,600	0.078	N-S(2): E-W(1):	0.107
Westbound	RT	1.00	20	1,600	0.013	• • •	0.265 *
vvestouriu	TH	3.00	702	4,800	0.007	E-W(2):	0.200
	LT	3.00 1.00	82			V/C:	0.373
Northbound	RT	1.00	108	<u>1,600</u> 1,600	0.051	Lost Time:	0.373
Northbound	TH	1.00	100		0.042	ITS:	0.000
	LT	1.00	46	1,600	0.090	115.	0.000
Eastbound	RT	0.00	118	1,600 0	0.029	ICU:	0.473
Eastbound	TH	3.00	899	4,800	0.000	100.	0.475
	LT	1.00	192	1,600	0.120 *	LOS:	А
Date/Time:	PM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	80	1,600	0.001	N-S(1):	0.144 *
Southbound	TH	1.00	140	1,600	0.001	N-S(2):	0.144
	LT	1.00	32	1,600	0.020 *	E-W(1):	0.224
Westbound	RT	1.00	59	1,600	0.020	E-W(2):	0.262 *
Westbound	ТН	3.00	788	4,800	0.164 *	L W(2).	0.202
	LT	1.00	174	1,600	0.109	V/C:	0.406
Northbound	RT	1.00	98	1,600	0.007	Lost Time:	0.100
	TH	1.00	199	1,600	0.124 *	ITS:	0.000
	LT	1.00	26	1,600	0.016		0.000
Eastbound	RT	0.00	48	0	0.000	ICU:	0.506
	TH	3.00	502	4,800	0.000	100.	0.000
	LT	1.00	157	1,600	0.098 *	LOS:	А

Project Title: Intersection: Description:	10 - 25t	FMP EIR h Street & g with Proj	Avenue J-8 ect					
Thru Lane: 1600 vph N-S Split Phase :								
Left Lan						Split Phase :	N	
Double Lt Penal	ty: 10	%				(% of cycle) :	10	
IT	S: 0	%			V/C Round	d Off (decs.) :	3	
OLA Movements FF Movement								
Date/Time:	AM PEA	AK HOUR						
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS	
Countly by a visual	БТ	0.00	40	0	0.000		0.040 *	
Southbound	RT	0.00	18	0	0.000	N-S(1):	0.219 *	
	TH	2.00	166	3,200	0.058	N-S(2):	0.106	
Westbound		<u>1.00</u> 0.00	225	1,600 0	0.141 *	E-W(1):	0.260 *	
westbound	RT TH	0.00 2.00	75 597	-	0.000 0.210	E-W(2):	0.231	
	LT		20	3,200	0.210	V/C:	0.479	
Northbound	RT	1.00 0.00	<u> </u>	1,600 0	0.013	Lost Time:	0.479	
Northbound	TH	2.00	90 152	3,200	0.000 *	ITS:	0.000	
	LT	2.00	76	1,600	0.078	113.	0.000	
Eastbound	RT	0.00	53	0	0.048	ICU:	0.579	
Lasibound	TH	2.00	738	3,200	0.000 *	100.	0.575	
	LT	1.00	33	1,600	0.021	LOS:	А	
Date/Time:	PM PEA	AK HOUR				1		
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS	
Southbound	RT	0.00	26	0	0.000	N S(1)	0.158 *	
Southbound	TH	2.00	20	3,200	0.000	N-S(1): N-S(2):	0.158	
	LT	1.00	144	1,600	0.090 *	E-W(1):	0.156	
Westbound	RT	0.00	155	0	0.000	E-W(2):	0.130	
Vicsibound	TH	2.00	687	3,200	0.263 *	\Box $\forall V (Z).$	0.215	
	LT	1.00	46	1,600	0.029	V/C:	0.437	
Northbound	RT	0.00	36	0	0.000	Lost Time:	0.100	
	TH	2.00	182	3,200	0.068 *	ITS:	0.000	
	LT	1.00	25	1,600	0.016		0.000	
Eastbound	RT	0.00	20	0	0.000	ICU:	0.537	
	TH	2.00	386	3,200	0.127			
	LT	1.00	25	1,600	0.016 *	LOS:	А	
						1		

Project Title: Intersection: Description:	11 - 25t	FMP EIR h Street & A g with Proje						
Thru Lane: 1600 vph N-S Split Phase : N								
Left Lar		•				Split Phase :	Ν	
Double Lt Penal		%				(% of cycle) :	10	
		%				d Off (decs.) :	3	
OLA Movement FF Movemen								
Date/Time:	AM PEA	K HOUR						
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS	
Coutbbound	рт	1 00	46	1 600	0.011	N C(4)	0 405 *	
Southbound	RT	1.00	46	1,600	0.011	N-S(1):	0.125 *	
	TH LT	1.00	107 100	1,600 1,600	0.067 0.063 *	N-S(2):	0.082 0.332 *	
Westbound	RT	<u>1.00</u> 1.00	43	1,600	0.003	E-W(1):	0.332	
Westbound	TH	2.00	43 840	3,200	0.000	E-W(2):	0.299	
	LT	2.00	27	1,600	0.203	V/C:	0.457	
Northbound	RT	0.00	67	0	0.000	Lost Time:	0.457	
Northbound	TH	2.00	131	3,200	0.000 *	ITS:	0.000	
	LT	1.00	24	1,600	0.002	113.	0.000	
Eastbound	RT	1.00	30	1,600	0.013	ICU:	0.557	
Lastbound	TH	2.00	1,008	3,200	0.315 *	100.	0.007	
	LT	1.00	57	1,600	0.036	LOS:	А	
Date/Time:	PM PEA	K HOUR				I		
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS	
Southbound	RT	1.00	53	1,600	0.019	N-S(1):	0.094	
Southbound	TH	1.00	134	1,600	0.013	N-S(2):	0.103 *	
	LT	1.00	74	1,600	0.046	E-W(1):	0.288	
Westbound	RT	1.00	70	1,600	0.021	E-W(2):	0.289 *	
	TH	2.00	834	3,200	0.261 *	(_).	0.200	
	LT	1.00	40	1,600	0.025	V/C:	0.392	
Northbound	RT	0.00	42	0	0.000	Lost Time:	0.100	
	TH	2.00	111	3,200	0.048	ITS:	0.000	
	LT	1.00	31	1,600	0.019 *			
Eastbound	RT	1.00	24	1,600	0.005	ICU:	0.492	
	TH	2.00	842	3,200	0.263			
	LT	1.00	45	1,600	0.028 *	LOS:	А	

Project Title:	AVCCD FMP EIR
Intersection:	12 - SR-14 SB Off Ramp & Avenue J
Description:	Existing with Project

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	MVMT LANES		CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	1.00	152	1,600	0.095	N-S(1):	0.108 *
	TH	0.00	0	0	0.000	N-S(2):	0.095
	LT	1.00	172	1,600	0.108 *	E-W(1):	0.224 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.156
	TH	3.00	751	4,800	0.156		
	LT	0.00	0	0	0.000 *	V/C:	0.332
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.432
	TH	3.00	1,075	4,800	0.224 *		
	LT	0.00	0	0	0.000	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT LANES		VOLUME	CAPACITY	V/C	ICU ANALYSIS	
		4.00		4	o 404 *		
Southbound	RT	1.00	258	1,600	0.161 *	N-S(1):	0.094
	TH	0.00	0	0	0.000	N-S(2):	0.161 *
	LT	1.00	151	1,600	0.094	E-W(1):	0.189
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.228 *
	TH	3.00	1,092	4,800	0.228 *		
	LT	0.00	0	0	0.000	V/C:	0.389
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	0.00	0	0	0.000 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.489
	ТН	3.00	906	4,800	0.189		
	LT	0.00	0	0	0.000 *	LOS:	А

Project Title:AVCCD FMP EIRIntersection:13 - 20th Street & SR-14 NB Off RampDescription:Existing with Project

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANALYSIS	
74111071011	101 0 101 1		VOLOME	0/11/10/11	110		
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.080
	TH	3.00	471	4,800	0.098 *	N-S(2):	0.098 *
	LT	0.00	0	0	0.000	E-W(1):	0.172
Westbound	RT	1.00	578	1,600	0.361 *	E-W(2):	0.361 *
	ТН	0.00	0	0	0.000		
	LT	1.00	275	1,600	0.172	V/C:	0.459
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	3.00	382	4,800	0.080	ITS:	0.000
	LT	0.00	0	0	0.000 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.559
	ТН	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	А
	RT TH LT RT TH	0.00 3.00 0.00 0.00 0.00	0 382 0 0 0	0 4,800 0 0 0	0.000 0.080 0.000 * 0.000 0.000	Lost Time: ITS: ICU:	0.10 0.00 0.5

Date/Time: PM PEAK HOUR

APPROACH	MVMT LANES		VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.098
	TH	3.00	875	4,800	0.182 *	N-S(2):	0.182 *
	LT	0.00	0	0	0.000	E-W(1):	0.261
Westbound	RT	1.00	487	1,600	0.304 *	E-W(2):	0.304 *
	TH	0.00	0	0	0.000		
	LT	1.00	417	1,600	0.261	V/C:	0.486
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	3.00	469	4,800	0.098	ITS:	0.000
	LT	0.00	0	0	0.000 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.586
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	А

Project Title: Intersection: Description:	14 - 20t	FMP EIR h Street & A g with Proje	Avenue J-8 ect				
Thru Lan	e: 1600	vph			N-S	Split Phase :	Ν
Left Lan		•				, Split Phase :	Ν
Double Lt Penalt	y: 10	%			Lost Time	(% of cycle) :	10
ITS	S: 0	%			V/C Round	d Off (decs.) :	3
OLA Movements FF Movement							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	2.00	418	3,200	0.101 *	N-S(1):	0.130
Southbound	TH	2.00	245	3,200	0.077	N-S(2):	0.140 *
	LT	1.00	71	1,600	0.044	E-W(1):	0.238 *
Westbound	RT	0.00	29	0	0.000	E-W(2):	0.200
Trootbound	TH	2.00	455	3,200	0.151	L W(2).	0.211
	LT	1.00	102	1,600	0.064 *	V/C:	0.378
Northbound	RT	1.00	145	1,600	0.059	Lost Time:	0.100
	TH	2.00	276	3,200	0.086	ITS:	0.000
	LT	1.00	62	1,600	0.039 *		
Eastbound	RT	0.00	78	0	0.000	ICU:	0.478
	TH	2.00	480	3,200	0.174 *		
	LT	1.00	96	1,600	0.060	LOS:	А
Date/Time:	PM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	2.00	750	3,200	0.212 *	N-S(1):	0.164
Southbound	TH	2.00	419	3,200	0.212	N-S(2):	0.104
	LT	1.00	80	1,600	0.050	E-W(1):	0.186
Westbound	RT	0.00	52	0	0.000	E-W(2):	0.263 *
	TH	2.00	645	3,200	0.218 *	(_).	0.200
	LT	1.00	144	1,600	0.090	V/C:	0.550
Northbound	RT	1.00	116	1,600	0.028	Lost Time:	0.100
	TH	2.00	365	3,200	0.114	ITS:	0.000
	LT	1.00	120	1,600	0.075 *		
Eastbound	RT	0.00	63	0	0.000	ICU:	0.650
	TH	2.00	245	3,200	0.096		
	LT	1.00	72	1,600	0.045 *	LOS:	В

Project Title: Intersection: Description:	15 - 20ti	FMP EIR h Street & A g with Proje					
Thru Lan	e: 1600	vph			N-S	Split Phase :	Ν
Left Lan		•				Split Phase :	Ν
Double Lt Penal	ty: 10	%			Lost Time	(% of cycle) :	10
IT	S: 0	%			V/C Round	d Off (decs.) :	3
OLA Movement FF Movement							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	87	1,600	0.001	N-S(1):	0.135 *
Southbound	TH	2.00	168	3,200	0.001	N-S(1).	0.135
	LT	2.00	97	2,880	0.033 *	E-W(1):	0.000
Westbound	RT	0.00	47	0	0.000	E-W(1):	0.243
Vestbound	TH	3.00	751	4,800	0.000 *	∟-∨∨(∠).	0.275
	LT	1.00	78	1,600	0.049	V/C:	0.408
Northbound	RT	0.00	80	0	0.049	Lost Time:	0.408
Nontribouriu	TH	2.00	244	3,200	0.000 *	ITS:	0.000
	LT	2.00	78	2,880	0.027	113.	0.000
Eastbound	RT	1.00	80	1,600	0.027	ICU:	0.508
Lasibound	TH	3.00	931	4,800	0.030	100.	0.500
	LT	1.00	171	1,600	0.107 *	LOS:	А
Date/Time:	PM PEA	K HOUR				I	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	112	1,600	0.020	N S(1)	0.160 *
Soumbound	TH	2.00	289	3,200	0.020	N-S(1): N-S(2):	0.100
	LT	2.00	163	2,880	0.090	E-W(1):	0.120
Westbound	RT	0.00	103	0	0.000	E-W(1):	0.200 *
Westboulid	TH	3.00	814	4,800	0.000 *	∟-∨∨(∠).	0.292
	LT	3.00 1.00	155	4,800 1,600	0.191	V/C:	0.452
Northbound	RT	0.00	94	0	0.000	Lost Time:	0.432
	TH	2.00	234	3,200	0.000 *	ITS:	0.000
	LT	2.00	105	2,880	0.036	110.	0.000
Eastbound	RT	1.00	64	1,600	0.022	ICU:	0.552
	TH	3.00	811	4,800	0.022	100.	0.002
	LT	1.00	161	1,600	0.103	LOS:	А

Project Title: Intersection: Description:	16 - 17ti	FMP EIR h Street & J g with Proje					
Thru Lar	ne: 1600	vph			N-S	Split Phase :	Ν
Left Lar		•				, Split Phase :	Ν
Double Lt Penal	lty: 10	%			Lost Time	(% of cycle) :	10
IT	-S: 0	%			V/C Round	d Off (decs.) :	3
OLA Movement FF Movemen							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	31	1,600	0.004	N-S(1):	0.162 *
Southbound	TH	1.00	28	1,600	0.004	N-S(1). N-S(2):	0.102
	LT	1.00	151	1,600	0.018	E-W(1):	0.047
Westbound	RT	0.00	72	0	0.000	E-W(2):	0.239
Vestbound	TH	3.00	831	4,800	0.000	∟-∨∨(∠).	0.219
	LT	1.00	75	1,600	0.047 *	V/C:	0.421
Northbound	RT	1.00	147	1,600	0.047	Lost Time:	0.421
Northbound	TH	1.00	47	1,600	0.029	ITS:	0.000
	LT	1.00	46	1,600	0.029	110.	0.000
Eastbound	RT	0.00	59	0	0.000	ICU:	0.521
Laoto dana	TH	3.00	957	4,800	0.212 *	100.	0.021
	LT	1.00	50	1,600	0.031	LOS:	А
Date/Time:	PM PEA	K HOUR				I	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	38	1,600	0.008	N-S(1):	0.148 *
Southbound	TH	1.00	43	1,600	0.000	N-S(2):	0.140
	LT	1.00	178	1,600	0.111 *	E-W(1):	0.317 *
Westbound	RT	0.00	138	0	0.000	E-W(2):	0.272
Woolbound	TH	3.00	1,018	4,800	0.241	L W(2).	0.272
	LT	1.00	153	1,600	0.096 *	V/C:	0.465
Northbound	RT	1.00	132	1,600	0.035	Lost Time:	0.100
	TH	1.00	59	1,600	0.037 *	ITS:	0.000
	LT	1.00	46	1,600	0.029		
Eastbound	RT	0.00	63	0	0.000	ICU:	0.565
	TH	3.00	1,000	4,800	0.221 *		
	LT	1.00	50	1,600	0.031	LOS:	А

Project Title: Intersection: Description:	17 - SR-	FMP EIR 14 SB Ran with Proj	nps & Avenue ect	к			
Thru Lan	e: 1600	vph			N-S	Split Phase :	Ν
Left Lan						Split Phase :	N
Double Lt Penalt		%				(% of cycle) :	10
ITS		%				d Off (decs.) :	3
OLA Movements	3:					(<i>'</i>	
FF Movement	s: EBR	- ,					
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.87	161	1,389	0.115	N-S(1):	0.129 *
	TH	0.00	0	0	0.000	N-S(2):	0.115
	LT	1.13	210	1,630	0.129 *	E-W(1):	0.266 *
Westbound	RT	0.00	279	0	0.000	E-W(2):	0.237
	TH	3.00	850	4,800	0.235		
	LT	0.00	0	0	0.000 *	V/C:	0.395
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	338	0	0.000	ICU:	0.495
	TH	3.00	935	4,800	0.266 *		
	LT	0.00	3	1,600	0.002	LOS:	A
Date/Time:	PM PEA	K HOUR				L	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
	БТ	0.00	047	4 500	0.404		0 4 5 0 *
Southbound	RT	0.99	217	1,589	0.134	N-S(1):	0.152 *
	TH	0.00	0	0	0.000	N-S(2):	0.134
M/a ath a us d		1.01	220	1,450	0.152 *	E-W(1):	0.275
Westbound	RT	0.00	529	0	0.000	E-W(2):	0.356 *
	TH	3.00	1,160	4,800	0.352 *	N//O	0 500
N a utila la secura al		0.00	0	0	0.000	V/C:	0.508
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000 *	ITS:	0.000
		0.00	0	0	0.000		0.000
Eastbound	RT	0.00	402	0	0.000	ICU:	0.608
	TH	3.00	912	4,800	0.275	1.00	Б
	LT	0.00	7	1,600	0.004 *	LOS:	В

Project Title:AVCCD FMP EIRIntersection:18 - 15th St/SR-14 NB Ramps & Ave KDescription:Existing with Project

Thru Lane:	1600 vph	
Left Lane:	1600 vph	
Double Lt Penalty:	10 %	
ITS:	0 %	
OLA Movements :		
FF Movements:		

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

APPROACH	MVMT LANES		VOLUME	CAPACITY	V/C	ICU ANALYSIS	
Southbound	RT	1.00	207	1,600	0.092	N-S(1):	0.350 *
	TH	0.07	7	112	0.062	N-S(2):	0.283
	LT	1.93	193	2,779	0.069 *	E-W(1):	0.188
Westbound	RT	1.00	180	1,600	0.113	E-W(2):	0.228 *
	TH	3.00	733	4,800	0.153 *		
	LT	0.00	0	0	0.000	V/C:	0.578
Northbound	RT	1.00	355	1,600	0.222	Lost Time:	0.100
	TH	1.00	449	1,600	0.281 *	ITS:	0.000
	LT	1.00	306	1,600	0.191		
Eastbound	RT	0.00	102	0	0.000	ICU:	0.678
	TH	3.00	800	4,800	0.188		
	LT	2.00	217	2,880	0.075 *	LOS:	В

Date/Time: PM PEAK HOUR

APPROACH MVMT LANES VOLUME CAPACITY V/C ICU ANALYSIS Southbound RT 1.00 462 1,600 0.263 * N-S(1): 0.371 0.490 * TΗ 0.12 22 192 0.114 N-S(2): LT 1.88 344 2,707 0.127 E-W(1): 0.207 Westbound RT 1.00 210 1,600 0.131 E-W(2): 0.264 * 1,018 4,800 TΗ 3.00 0.212 * V/C: 0.754 LT 0.00 0 0.000 0 Northbound Lost Time: RT 1.00 386 1,600 0.241 0.100 1.00 391 ITS: 0.000 TΗ 1,600 0.244 LT 1.00 363 1,600 0.227 * Eastbound RT 0.00 113 0 0.000 ICU: 0.854 ΤH 3.00 882 4,800 0.207 LT 2.00 149 2,880 0.052 * LOS: D

Project Title: Intersection: Description:	1 - 40th	FMP EIR Street & A vith Projec					
Thru Land Left Land Double Lt Penalt	e: 1600 y: 10	vph			E-W Lost Time	Split Phase : Split Phase : (% of cycle) : d Off (decs.) :	N N 10 3
OLA Movements FF Movement	;:					- ()	
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT TH LT	0.14 0.86 1.00	32 190 115	231 1,369 1,600	0.128 0.139 * 0.072	N-S(1): N-S(2): E-W(1):	0.150 0.203 * 0.307 *
Westbound	RT TH LT	1.00 1.00 1.00 1.00	49 311 46	1,600 1,600 1,600 1,600	0.000 0.194 0.029 *	E-W(2): V/C:	0.215
Northbound	RT TH LT	1.00 2.00 1.00	147 193 103	1,600 3,200 1,600	0.078 0.060 0.064 *	Lost Time: ITS:	0.100 0.000
Eastbound	RT TH LT	0.00 2.00 1.00	103 787 34	0 3,200 1,600	0.000 0.278 * 0.021	ICU: LOS:	0.610 B
Date/Time:	PM PEA	K HOUR				<u> </u>	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT TH LT	0.19 0.81 1.00	50 211 54	307 1,293 1,600	0.154 0.163 * 0.034	N-S(1): N-S(2): E-W(1):	0.096 0.206 * 0.198
Westbound	RT TH LT	1.00 1.00 1.00	61 458 100	1,600 1,600 1,600	0.021 0.286 * 0.063	E-W(2): V/C:	0.304 *
Northbound	RT TH LT	1.00 2.00 1.00	83 199 69	1,600 3,200 1,600	0.021 0.062 0.043 *	Lost Time: ITS:	0.100 0.000
Eastbound	RT TH	0.00 2.00	47 385	0 3,200	0.000 0.135	ICU:	0.610

г

Intersection	
Intersection Delay, s/veh	75.3
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۳.	¢Î		٦	ef 👘		۳.	•	1	٦	ef 🔰	
Traffic Vol, veh/h	19	416	34	14	274	107	29	20	7	292	43	68
Future Vol, veh/h	19	416	34	14	274	107	29	20	7	292	43	68
Peak Hour Factor	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88	0.88
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	22	473	39	16	311	122	33	23	8	332	49	77
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			2			2			2		
HCM Control Delay	125.1			65.6			14.5			35.3		
HCM LOS	F			F			В			E		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	92%	0%	72%	0%	39%	
Vol Right, %	0%	0%	100%	0%	8%	0%	28%	0%	61%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	29	20	7	19	450	14	381	292	111	
LT Vol	29	0	0	19	0	14	0	292	0	
Through Vol	0	20	0	0	416	0	274	0	43	
RT Vol	0	0	7	0	34	0	107	0	68	
Lane Flow Rate	33	23	8	22	511	16	433	332	126	
Geometry Grp	8	8	8	8	8	8	8	8	8	
Degree of Util (X)	0.096	0.063	0.021	0.053	1.181	0.039	0.977	0.82	0.279	
Departure Headway (Hd)	11.199	10.671	9.932	8.88	8.313	9.269	8.551	9.441	8.474	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Сар	322	338	363	404	440	389	429	385	426	
Service Time	8.899	8.371	7.632	6.63	6.063	6.969	6.251	7.141	6.174	
HCM Lane V/C Ratio	0.102	0.068	0.022	0.054	1.161	0.041	1.009	0.862	0.296	
HCM Control Delay	15.1	14.1	12.8	12.1	129.9	12.3	67.6	43.2	14.4	
HCM Lane LOS	С	В	В	В	F	В	F	E	В	
HCM 95th-tile Q	0.3	0.2	0.1	0.2	19.5	0.1	11.8	7.4	1.1	

ntersection	
ntersection Delay, s/veh	59.9
ntersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	¢Î		٦	ef 👘		٦	•	1	٦.	ef 🔰	
Traffic Vol, veh/h	24	264	21	6	495	107	18	16	18	120	12	19
Future Vol, veh/h	24	264	21	6	495	107	18	16	18	120	12	19
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	26	281	22	6	527	114	19	17	19	128	13	20
Number of Lanes	1	1	0	1	1	0	1	1	1	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			3		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			3			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	3			2			2			2		
HCM Control Delay	18.7			96.3			11.5			14		
HCM LOS	С			F			В			В		

Lane	NBLn1	NBLn2	NBLn3	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	100%	0%	0%	100%	0%	100%	0%	100%	0%	
Vol Thru, %	0%	100%	0%	0%	93%	0%	82%	0%	39%	
Vol Right, %	0%	0%	100%	0%	7%	0%	18%	0%	61%	
Sign Control	Stop									
Traffic Vol by Lane	18	16	18	24	285	6	602	120	31	
LT Vol	18	0	0	24	0	6	0	120	0	
Through Vol	0	16	0	0	264	0	495	0	12	
RT Vol	0	0	18	0	21	0	107	0	19	
Lane Flow Rate	19	17	19	26	303	6	640	128	33	
Geometry Grp	8	8	8	8	8	8	8	8	8	
Degree of Util (X)	0.046	0.038	0.039	0.053	0.582	0.012	1.116	0.29	0.067	
Departure Headway (Hd)	9.04	8.523	7.8	7.736	7.175	6.904	6.274	8.613	7.654	
Convergence, Y/N	Yes									
Сар	398	423	462	466	506	518	583	420	471	
Service Time	6.74	6.223	5.5	5.436	4.875	4.647	4.016	6.313	5.354	
HCM Lane V/C Ratio	0.048	0.04	0.041	0.056	0.599	0.012	1.098	0.305	0.07	
HCM Control Delay	12.2	11.6	10.8	10.9	19.4	9.7	97.2	14.8	10.9	
HCM Lane LOS	В	В	В	В	С	А	F	В	В	
HCM 95th-tile Q	0.1	0.1	0.1	0.2	3.7	0	20.1	1.2	0.2	

Project Title:	AVCCD FMP EIR
Intersection:	3 - 32nd St/Driveway & Avenue K
Description:	Future with Project

Thru Lane:	1600 vph	N-S Split Phase :	Ν
Left Lane:	1600 vph	E-W Split Phase :	Ν
Double Lt Penalty:	10 %	Lost Time (% of cycle) :	10
ITS:	0 %	V/C Round Off (decs.) :	3
OLA Movements :			
FF Movements:			

Date/Time: AM PEAK HOUR

					1//0		
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.76	28	1,211	0.000	N-S(1):	0.174 *
	TH	0.24	9	389	0.023	N-S(2):	0.050
	LT	1.00	125	1,600	0.078 *	E-W(1):	0.251
Westbound	RT	0.00	250	0	0.000	E-W(2):	0.303 *
	TH	3.00	442	3,200	0.216 *		
	LT	1.00	58	1,600	0.036	V/C:	0.477
Northbound	RT	0.84	129	1,340	0.078	Lost Time:	0.100
	TH	0.16	25	260	0.096 *	ITS:	0.000
	LT	1.00	43	1,600	0.027		
Eastbound	RT	0.00	25	0	0.000	ICU:	0.577
	TH	3.00	1,006	4,800	0.215		
	LT	1.00	139	1,600	0.087 *	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.84	37	1,345	0.005	N-S(1):	0.160 *
	TH	0.16	7	255	0.028	N-S(2):	0.034
	LT	1.00	119	1,600	0.074 *	E-W(1):	0.212 *
Westbound	RT	0.00	96	0	0.000	E-W(2):	0.206
	TH	3.00	683	4,800	0.162		
	LT	1.00	149	1,600	0.093 *	V/C:	0.372
Northbound	RT	0.94	129	1,507	0.039	Lost Time:	0.100
	TH	0.06	8	93	0.086 *	ITS:	0.000
	LT	1.00	10	1,600	0.006		
Eastbound	RT	0.00	11	0	0.000	ICU:	0.472
	TH	3.00	561	4,800	0.119 *		
	LT	1.00	71	1,600	0.044	LOS:	А

Project Title: Intersection: Description:	4 - 30th	FMP EIR Street & A with Projec					
Thru Lan Left Lan Double Lt Penali IT	e: 1600 ty: 10	•			E-W Lost Time	S Split Phase : / Split Phase : (% of cycle) : d Off (decs.) :	N N 10 3
OLA Movements FF Movement							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT TH	0.00 3.00	116 484 54	0 4,800	0.000 0.125 *	N-S(1): N-S(2):	0.131 0.226 *
Westbound	LT RT TH LT	1.00 1.00 2.00 1.00	36 499 231	1,600 1,600 3,200 1,600	0.034 0.006 0.156 0.144 *	E-W(1): E-W(2): V/C:	0.381 * 0.254 0.607
Northbound	RT TH LT	0.00 3.00 1.00	145 320 162	0 4,800 1,600	0.000 0.097 0.101 *	Lost Time: ITS:	0.100 0.000
Eastbound	RT TH LT	0.00 3.00 1.00	212 925 157	0 4,800 1,600	0.000 0.237 * 0.098	ICU: LOS:	0.707 C
Date/Time:	PM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT TH LT	0.00 3.00 1.00	216 305 18	0 3,200 1,600	0.000 0.163 * 0.011	N-S(1): N-S(2): E-W(1):	0.181 0.209 * 0.275 *
Westbound	RT TH LT	1.00 2.00 1.00	42 585 257	1,600 3,200 1,600	0.021 0.183 0.161 *	E-W(2):	0.254
Northbound	RT TH LT	0.00 3.00 1.00	187 356 74	0 3,200 1,600	0.000 0.170 0.046 *	Lost Time: ITS:	0.100 0.000
Eastbound	RT TH	0.00 3.00	59 487	0 4,800	0.000 0.114 *	ICU:	0.584

Project Title: Intersection: Description:	5 - 30th	FMP EIR Street & A with Projec					
Thru Lar	ne: 1600	vph			N-S	Split Phase :	Ν
Left La		•				Split Phase :	N
Double Lt Pena		%				(% of cycle) :	10
		%				d Off (decs.) :	3
OLA Movement FF Movemen							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	133	1,600	0.062	N S(1)	0.231
Soumbound	TH	2.00	750	3,200	0.002	N-S(1): N-S(2):	0.231
	LT	2.00	142	1,600	0.234	• •	0.315
Westbound	RT	0.00	53	0	0.009	E-W(1): E-W(2):	0.347
Westbound					0.000	⊏-vv(∠).	0.201
	TH LT	2.00	452 177	3,200	0.158	V/C:	0.662
Northbound	RT	<u>1.00</u> 1.00	141	1,600 1,600	0.033	Lost Time:	0.062
Northbouriu						ITS:	0.100
	TH LT	2.00	455 130	3,200	0.142	115.	0.000
Eastbound	RT	1.00	130	1,600 0	0.081 *	ICU:	0 760
Eastbound						100.	0.762
	TH	2.00	641	3,200	0.236 *	1.08	~
	LT	1.00	69	1,600	0.043	LOS:	С
Date/Time:	PM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	63	1,600	0.017	N-S(1):	0.193
Southbound	TH	2.00	552	3,200	0.017 *	N-S(1). N-S(2):	0.195
	LT	1.00	54	1,600	0.034	E-W(1):	0.230
Westbound	RT	0.00	81	0	0.000	E-W(2):	0.263
Vestbound	TH	2.00	614	3,200	0.000	L-VV(Z).	0.205
	LT	1.00	190	1,600	0.217	V/C:	0.528
Northbound	RT	1.00	135	1,600	0.025	Lost Time:	0.100
Northbound	TH	2.00	508	3,200	0.159	ITS:	0.000
	LT	1.00	132	1,600	0.139	110.	0.000
Eastbound	RT	0.00	132	0	0.000	ICU:	0.628
	TH	2.00	361	3,200	0.000 *	100.	0.020
	LT	1.00	73	1,600	0.046	LOS:	В
	L I	1.00	75	1,000	0.040	200.	U

Project Title:	AVCCD FMP EIR
Intersection:	6 - 30th Street & Ave J-12/New Driveway
Description:	Future with Project

Thru Lane:	1600 vph	N-S Split Phase :	Ν
Left Lane:	1600 vph	E-W Split Phase :	Ν
Double Lt Penalty:	10 %	Lost Time (% of cycle) :	10
ITS:	0 %	V/C Round Off (decs.) :	3
OLA Movements :			
FF Movements:			

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	119	0	0.000	N-S(1):	0.183
	TH	3.00	696	4,800	0.170 *	N-S(2):	0.291 *
	LT	1.00	21	1,600	0.013	E-W(1):	0.009
Westbound	RT	1.00	19	1,600	0.005 *	E-W(2):	0.023 *
	TH	0.00	0	0	0.000		
	LT	1.00	15	1,600	0.009	V/C:	0.314
Northbound	RT	0.00	19	0	0.000	Lost Time:	0.100
	TH	3.00	797	4,800	0.170	ITS:	0.000
	LT	1.00	193	1,600	0.121 *		
Eastbound	RT	1.00	45	1,600	0.000	ICU:	0.414
	TH	0.00	0	0	0.000		
	LT	1.00	28	1,600	0.018 *	LOS:	А

Date/Time: PM PEAK HOUR

					N//O		
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	83	0	0.000	N-S(1):	0.163
	TH	3.00	682	4,800	0.159 *	N-S(2):	0.243 *
	LT	1.00	25	1,600	0.016	E-W(1):	0.029
Westbound	RT	1.00	18	1,600	0.003 *	E-W(2):	0.044 *
	TH	0.00	0	0	0.000		
	LT	1.00	9	1,600	0.006	V/C:	0.287
Northbound	RT	0.00	23	0	0.000	Lost Time:	0.100
	TH	3.00	684	4,800	0.147	ITS:	0.000
	LT	1.00	134	1,600	0.084 *		
Eastbound	RT	1.00	103	1,600	0.023	ICU:	0.387
	ТН	0.00	0	0	0.000		
	LT	1.00	65	1,600	0.041 *	LOS:	А

Project Title: Intersection: Description:	7 - 30th	FMP EIR Street & A with Projec					
Thru Lar		•				Split Phase :	N
Left Lar						Split Phase :	N
Double Lt Penal	,	% %				(% of cycle) :	10 3
OLA Movement FF Movemen	s:	%			V/C KOUII	d Off (decs.) :	3
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	177	1,600	0.081	N-S(1):	0.284 *
	TH	2.00	444	3,200	0.139	N-S(2):	0.237
	LT	2.00	175	2,880	0.061 *	E-W(1):	0.228
Westbound	RT	0.00	352	0	0.000	E-W(2):	0.331 *
	TH	3.00	519	3,200	0.272 *		
	LT	2.00	58	2,880	0.020	V/C:	0.615
Northbound	RT	1.00	159	1,600	0.089	Lost Time:	0.100
	TH	2.00	713	3,200	0.223 *	ITS:	0.000
	LT	2.00	281	2,880	0.098		
Eastbound	RT	0.00	193	0	0.000	ICU:	0.715
	TH	3.00	805	4,800	0.208		
	LT	2.00	170	2,880	0.059 *	LOS:	С
Date/Time:	PM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	136	1,600	0.064	N-S(1):	0.270 *
	TH	2.00	557	3,200	0.174	N-S(2):	0.230
	LT	2.00	288	2,880	0.100 *	E-W(1):	0.187
Westbound	RT	0.00	217	0	0.000	E-W(2):	0.212 *
	TH	3.00	604	4,800	0.171 *	()	
	LT	2.00	115	2,880	0.040	V/C:	0.482
Northbound	RT	1.00	126	1,600	0.059	Lost Time:	0.100
	TH	2.00	543	3,200	0.170 *	ITS:	0.000
	LT	2.00	162	2,880	0.056		
Eastbound	RT	0.00	173	0	0.000	ICU:	0.582
	TH	3.00	532	4,800	0.147		
	LT	2.00	119	2,880	0.041 *	LOS:	А

Thru Lane:1600 vphN-S Split Phase :NLeft Lane:1600 vphE-W Split Phase :NDouble Lt Penalty:10 %Lost Time (% of cycle) :10ITS:0 %V/C Round Off (decs.) :3OLA Movements :FF Movements:3Date/Time:AM PEAK HOUR
Left Lane:1600 vphE-W Split Phase :NDouble Lt Penalty:10 %Lost Time (% of cycle) :10ITS:0 %V/C Round Off (decs.) :3OLA Movements :FF Movements:10
Double Lt Penalty:10 %Lost Time (% of cycle) :10ITS:0 %V/C Round Off (decs.) :3OLA Movements :FF Movements:
ITS: 0 % V/C Round Off (decs.) : 3 OLA Movements : FF Movements:
FF Movements:
Date/Time: AM PEAK HOUR
APPROACH MVMT LANES VOLUME CAPACITY V/C ICU ANALYSIS
Southbound RT 1.00 54 1,600 0.004 N-S(1): 0.328
TH 2.00 551 3,200 0.172 N-S(2): 0.189
LT 1.00 113 1,600 0.071 * E-W(1): 0.175
Westbound RT 0.00 157 1,600 0.098 E-W(1). 0.173
TH 2.00 89 1,600 0.056
LT 1.00 87 1,600 0.054 * V/C: 0.503
Image: Northbound RT 1.00 87 1,600 0.034 0.034 Northbound RT 1.00 88 1,600 0.028 Lost Time: 0.100
TH 2.00 823 3,200 0.257 * ITS: 0.000
LT 1.00 27 1,600 0.017
Eastbound RT 1.00 37 1,600 0.017 ICU: 0.603
TH 1.00 194 1,600 0.121 *
LT 1.00 96 1,600 0.060 LOS: B
Date/Time: PM PEAK HOUR
APPROACH MVMT LANES VOLUME CAPACITY V/C ICU ANALYSIS
Southbound RT 1.00 81 1,600 0.030 N-S(1): 0.259
TH 2.00 623 3,200 0.195 N-S(2): 0.231
LT 1.00 82 1,600 0.051 * E-W(1): 0.133
Westbound RT 0.00 132 0 0.000 E-W(1): 0.133
TH 2.00 240 3,200 0.116 *
LT 1.00 125 1,600 0.078 V/C: 0.416
Northbound RT 1.00 123 1,000 0.078 0.078 Northbound RT 1.00 128 1,600 0.041 Lost Time: 0.100
TH 2.00 667 3,200 0.208 * ITS: 0.000
LT 1.00 57 1,600 0.036
Eastbound RT 1.00 63 1,600 0.022 ICU: 0.516
TH 1.00 88 1,600 0.022 100.000

Project Title: Intersection: Description:	9 - 25th	FMP EIR Street & A with Projec					
Thru Lar Left Lar		•				Split Phase : Split Phase :	N N
Double Lt Penal	ty: 10	%			10 3		
OLA Movement FF Movemen							
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	144	1,600	0.028	N-S(1):	0.108
	TH	1.00	134	1,600	0.084 *	N-S(2):	0.115 *
	LT	1.00	21	1,600	0.013	E-W(1):	0.294
Westbound	RT	1.00	37	1,600	0.017	E-W(2):	0.347 *
	TH	2.00	711	3,200	0.222 *		
	LT	1.00	103	1,600	0.064	V/C:	0.462
Northbound	RT	1.00	129	1,600	0.048	Lost Time:	0.100
	TH	1.00	152	1,600	0.095	ITS:	0.000
	LT	1.00	49	1,600	0.031 *		
Eastbound	RT	0.00	121	0	0.000	ICU:	0.562
	TH	3.00	983	4,800	0.230		
	LT	1.00	200	1,600	0.125 *	LOS:	A
Date/Time:	PM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	87	1,600	0.003	N-S(1):	0.154 *
	TH	1.00	160	1,600	0.100	N-S(2):	0.123
	LT	1.00	40	1,600	0.025 *	E-W(1):	0.254
Westbound	RT	1.00	68	1,600	0.030	E-W(2):	0.354 *
	TH	2.00	806	3,200	0.252 *	. ,	
	LT	1.00	209	1,600	0.131	V/C:	0.508
Northbound	RT	1.00	124	1,600	0.012	Lost Time:	0.100
	TH	1.00	207	1,600	0.129 *	ITS:	0.000
	LT	1.00	36	1,600	0.023		
Eastbound	RT	0.00	54	0	0.000	ICU:	0.608
	TH	3.00	537	4,800	0.123		
	LT	1.00	163	1,600	0.102 *	LOS:	В

Project Title: Intersection: Description:	10 - 25t	FMP EIR h Street & with Projec	Avenue J-8 ct				
Thru La	ne: 1600	vph			N-S	Split Phase :	Ν
Left La						Split Phase :	Ν
Double Lt Pena	alty: 10	%				(% of cycle) :	10
ľ	TS: 0	%			V/C Round	d Off (decs.) :	3
OLA Movemen FF Movemer							
Date/Time:	AM PEA	AK HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	пт	0.00	20	0	0.000	N 8(4).	0 000 *
Souindound	RT TH	2.00	20	0 3,200		N-S(1):	0.228 *
	LT	2.00	179 232	3,200 1,600	0.062 0.145 *	N-S(2): E-W(1):	0.111 0.267 *
Westbound	RT	0.00	76	0	0.000	E-W(1). E-W(2):	0.207
Westbound	TH	2.00	626	3,200	0.000	\Box -vv(Σ).	0.241
	LT	1.00	23	1,600	0.219	V/C:	0.495
Northbound	RT	0.00	102	0	0.000	Lost Time:	0.495
Northbound	TH	2.00	162	3,200	0.083 *	ITS:	0.000
	LT	1.00	79	1,600	0.000	110.	0.000
Eastbound	RT	0.00	57	0	0.000	ICU:	0.595
Edotoodha	TH	2.00	753	3,200	0.253 *	100.	0.000
	LT	1.00	35	1,600	0.022	LOS:	А
Date/Time:	PM PEA	K HOUR				I	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	31	0	0.000	N-S(1):	0.173 *
Southbound	TH	2.00	234	3,200	0.000	N-S(1). N-S(2):	0.173
	LT	1.00	161	1,600	0.101 *	E-W(1):	0.161
Westbound	RT	0.00	161	0	0.000	E-W(2):	0.292 *
Trootbound	TH	2.00	722	3,200	0.276 *	(_).	0.202
	LT	1.00	49	1,600	0.031	V/C:	0.465
Northbound	RT	0.00	36	0	0.000	Lost Time:	0.100
	TH	2.00	194	3,200	0.072 *	ITS:	0.000
	LT	1.00	32	1,600	0.020		
Eastbound	RT	0.00	24	0	0.000	ICU:	0.565
	TH	2.00	392	3,200	0.130		
	LT	1.00	26	1,600	0.016 *	LOS:	А
						1	

Project Title: Intersection: Description:	11 - 25t	FMP EIR h Street & / with Projec						
Thru Lar Left Lar Double Lt Penal	ne: 1600 lty: 10	vphE-W Split Phase :%Lost Time (% of cycle) :						
OLA Movement FF Movemen	S:	%			V/C Roun	a Off (decs.) :	3	
Date/Time:	AM PEA	K HOUR						
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS	
Southbound	RT	1.00	50	1,600	0.012	N-S(1):	0.138 *	
	TH	1.00	116	1,600	0.073	N-S(2):	0.091	
	LT	1.00	104	1,600	0.065 *	E-W(1):	0.347 *	
Westbound	RT	1.00	47	1,600	0.000	E-W(2):	0.309	
	TH	2.00	866	3,200	0.271			
	LT	1.00	36	1,600	0.023 *	V/C:	0.485	
Northbound	RT	0.00	93	0	0.000	Lost Time:	0.100	
	TH	2.00	140	3,200	0.073 *	ITS:	0.000	
	LT	1.00	28	1,600	0.018			
Eastbound	RT	1.00	34	1,600	0.013	ICU:	0.585	
	TH	2.00	1,038	3,200	0.324 *			
	LT	1.00	61	1,600	0.038	LOS:	A	
Date/Time:	PM PEA	K HOUR						
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS	
Southbound	RT	1.00	57	1,600	0.020	N-S(1):	0.104	
	TH	1.00	155	1,600	0.097 *	N-S(2):	0.119 *	
	LT	1.00	78	1,600	0.049	E-W(1):	0.317 *	
Westbound	RT	1.00	74	1,600	0.022	E-W(2):	0.301	
	TH	2.00	864	3,200	0.270	. ,		
	LT	1.00	57	1,600	0.036 *	V/C:	0.436	
Northbound	RT	0.00	55	0	0.000	Lost Time:	0.100	
	TH	2.00	120	3,200	0.055	ITS:	0.000	
	LT	1.00	35	1,600	0.022 *			
		1.00	28	1,600	0.007	ICU:	0.536	
Eastbound	RT					1001	0.000	
Eastbound	TH LT	2.00 1.00	898 49	3,200	0.281 * 0.031	LOS:		

Project Title:	AVCCD FMP EIR
Intersection:	12 - SR-14 SB Off Ramp & Avenue J
Description:	Future with Project

Thru Lane:	1600 vph	N-S Split Phase :
Left Lane:	1600 vph	E-W Split Phase :
Double Lt Penalty:	10 %	Lost Time (% of cycle) :
ITS:	0 %	V/C Round Off (decs.) :
OLA Movements :		
FF Movements:		

N N 10 3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	170	1,600	0.106	N-S(1):	0.121 *
	TH	0.00	0	0	0.000	N-S(2):	0.106
	LT	1.00	193	1,600	0.121 *	E-W(1):	0.367 *
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.252
	TH	2.00	806	3,200	0.252		
	LT	0.00	0	0	0.000 *	V/C:	0.488
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000 *	ITS:	0.000
	LT	0.00	0	0	0.000		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.588
	TH	2.00	1,175	3,200	0.367 *		
	LT	0.00	0	0	0.000	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	281	1,600	0.176 *	N-S(1):	0.098
	TH	0.00	0	0	0.000	N-S(2):	0.176 *
	LT	1.00	157	1,600	0.098	E-W(1):	0.306
Westbound	RT	0.00	0	0	0.000	E-W(2):	0.380 *
	TH	2.00	1,217	3,200	0.380 *		
	LT	0.00	0	0	0.000	V/C:	0.556
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000	ITS:	0.000
	LT	0.00	0	0	0.000 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.656
	TH	2.00	978	3,200	0.306		
	LT	0.00	0	0	0.000 *	LOS:	В

Project Title:AVCCD FMP EIRIntersection:13 - 20th Street & SR-14 NB Off RampDescription:Future with Project

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	
////////			VOLOME	0/11/10/11	10	1007.117.	
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.082
	TH	3.00	486	4,800	0.101 *	N-S(2):	0.101 *
	LT	0.00	0	0	0.000	E-W(1):	0.184
Westbound	RT	1.00	639	1,600	0.399 *	E-W(2):	0.399 *
	TH	0.00	0	0	0.000		
	LT	1.00	295	1,600	0.184	V/C:	0.500
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	3.00	392	4,800	0.082	ITS:	0.000
	LT	0.00	0	0	0.000 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.600
	TH	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	0.00	0	0	0.000	N-S(1):	0.101
	TH	3.00	899	4,800	0.187 *	N-S(2):	0.187 *
	LT	0.00	0	0	0.000	E-W(1):	0.278
Westbound	RT	1.00	543	1,600	0.339 *	E-W(2):	0.339 *
	TH	0.00	0	0	0.000		
	LT	1.00	444	1,600	0.278	V/C:	0.526
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	3.00	484	4,800	0.101	ITS:	0.000
	LT	0.00	0	0	0.000 *		
Eastbound	RT	0.00	0	0	0.000	ICU:	0.626
	ТН	0.00	0	0	0.000		
	LT	0.00	0	0	0.000 *	LOS:	В

Project Title: Intersection: Description:	14 - 20t	FMP EIR h Street & with Projec	Avenue J-8 ct				
Thru La	ne: 1600	vph			N-S	Split Phase :	Ν
Left La		•				, Split Phase :	Ν
Double Lt Pena		%				(% of cycle) :	10
		%				d Off (decs.) :	3
OLA Movemen FF Movemer							
Date/Time:	AM PEA	AK HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	2.00	460	3,200	0.114	N S(1)	0.182 *
Southbound	TH	2.00	260	3,200	0.081	N-S(1): N-S(2):	0.162
	LT	2.00	200 75	1,600	0.081	E-W(1):	0.153
Westbound	RT	0.00	30	0	0.047	E-W(1). E-W(2):	0.204
vvestbound	TH	2.00	477	3,200	0.000	⊏-vv(∠).	0.210
	LT	2.00	120		0.158	V/C:	0.446
Northbound	RT	1.00		1,600	0.135 *		0.446
Northbound	TH	2.00	276 302	1,600	0.135 0.094	Lost Time: ITS:	0.100
			502 62	3,200		115.	0.000
Eastbound	LT RT	1.00	81	1,600 0	0.039	ICU:	0 546
Easibound	TH	0.00		-	0.000 0.189 *	100.	0.546
		2.00	523	3,200		1.08	٨
	LT	1.00	96	1,600	0.060	LOS:	A
Date/Time:	PM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	2.00	774	3,200	0.219 *	N 8(1)	0.171
Southbound	TH	2.00	437	3,200	0.219	N-S(1): N-S(2):	0.308 *
	LT	1.00	437	1,600	0.051	E-W(1):	0.304 *
Westbound	RT	0.00	60	0	0.000	E-W(1).	0.304
VV COLDUITU	TH	2.00	705	3,200	0.000	L-VV(<i>∠)</i> .	0.204
	LT	2.00	307	1,600	0.239	V/C:	0.612
Northbound	RT	1.00	195	1,600	0.026	Lost Time:	0.012
	TH	2.00	383	3,200	0.020	ITS:	0.000
	LT	2.00	303 142	3,200 1,600	0.120	113.	0.000
Eastbound	RT	0.00	66	1,6000	0.009	ICU:	0.712
Lasinonin	TH	2.00	293	3,200	0.000	100.	0.712
	LT	2.00	293 72	3,200 1,600	0.112	LOS:	С
	LI	1.00	12	1,000	0.040	L03.	U

Project Title: Intersection: Description:	15 - 20t	FMP EIR h Street & / with Projec					
Thru La	ne: 1600	vph			N-S	Split Phase :	Ν
Left La						Split Phase :	Ν
Double Lt Pena		%				(% of cycle) :	10
П	TS: 0	%			V/C Round	d Off (decs.) :	3
OLA Movemen FF Movemer							
Date/Time:	AM PEA	AK HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	88	1,600	0.000	N-S(1):	0.159 *
Southbound	TH	2.00	188	3,200	0.000	N-S(1). N-S(2):	0.139
	LT	2.00	100	2,880	0.039	E-W(1):	0.261
Westbound	RT	0.00	65	0	0.000	E-W(2):	0.201
Vesibouria	TH	3.00	810	4,800	0.000 *	L-VV(<i>Z</i>).	0.292
	LT	1.00	84	1,600	0.053	V/C:	0.451
Northbound	RT	0.00	83	0	0.000	Lost Time:	0.401
Northbound	TH	2.00	295	3,200	0.118 *	ITS:	0.000
	LT	2.00	82	2,880	0.028	110.	0.000
Eastbound	RT	1.00	86	1,600	0.040	ICU:	0.551
Edotoound	TH	3.00	999	4,800	0.208	100.	0.001
	LT	1.00	176	1,600	0.110 *	LOS:	А
Date/Time:	PM PEA	AK HOUR				L	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.00	118	1,600	0.022	N S(1)	0.185 *
Southbound	TH	2.00	354	3,200	0.022	N-S(1): N-S(2):	0.165
	LT	2.00	178	2,880	0.062 *	E-W(1):	0.133
Westbound	RT	0.00	127	0	0.002	E-W(1):	0.312 *
Westbound	TH	3.00	872	4,800	0.208 *	L VV(2).	0.012
	LT	1.00	176	1,600	0.200	V/C:	0.497
Northbound	RT	0.00	111	0	0.000	Lost Time:	0.100
	TH	2.00	284	3,200	0.123 *	ITS:	0.000
	LT	2.00	120	2,880	0.042		0.000
Eastbound	RT	1.00	74	1,600	0.025	ICU:	0.597
	TH	3.00	891	4,800	0.186		
	LT	1.00	167	1,600	0.104 *	LOS:	А
				.,			

Project Title: Intersection: Description:	16 - 17t	FMP EIR h Street & / with Projec					
Thru Lar		•				Split Phase :	N
Left Laı Double Lt Pena רו	lty: 10	vpn % %			Lost Time	Split Phase : (% of cycle) : d Off (decs.) :	N 10 3
OLA Movement FF Movemen	ts :				v/o rtouri	u on (uooo.) .	0
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	2.00	31	3,200	0.000	N-S(1):	0.154
	ТН	0.16	31	262	0.118 *	N-S(2):	0.158 *
	LT	0.84	158	1,338	0.118	E-W(1):	0.311 *
Westbound	RT	0.00	72	0	0.000	E-W(2):	0.232
	TH	3.00	892	4,800	0.201		
	LT	1.00	128	1,600	0.080 *	V/C:	0.469
Northbound	RT	2.00	193	3,200	0.020	Lost Time:	0.100
	TH	0.86	50	1,379	0.036	ITS:	0.000
	LT	1.14	66	1,639	0.040 *		
Eastbound	RT	0.00	80	0	0.000	ICU:	0.569
	TH	3.00	1,029	4,800	0.231 *		
	LT	1.00	50	1,600	0.031	LOS:	A
Date/Time:	PM PEA	K HOUR				<u>.</u>	
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	2.00	41	3,200	0.000	N-S(1):	0.193
	TH	0.20	46	317	0.145 *	N-S(2):	0.198 *
	LT	0.80	186	1,283	0.145	E-W(1):	0.391 *
Westbound	RT	0.00	144	0	0.000	E-W(2):	0.286
	TH	3.00	1,074	4,800	0.254	. ,	
	LT	1.00	237	1,600	0.148 *	V/C:	0.589
Northbound	RT	2.00	246	3,200	0.003	Lost Time:	0.100
	TH	0.81	62	1,288	0.048	ITS:	0.000
	LT	1.19	92	1,721	0.053 *		
Eastbound	RT	0.00	100	0	0.000	ICU:	0.689
	TH	3.00	1,068	4,800	0.243 *		
	LT	1.00	51	1,600	0.032	LOS:	В

Project Title: Intersection: Description:	17 - SR-	FMP EIR 14 SB Ran with Projec	nps & Avenue st	К			
Thru Lar	ne: 1600	vph			N-S	Split Phase :	Ν
Left Lar		•				Split Phase :	Ν
Double Lt Pena	lty: 10	%			Lost Time	(% of cycle) :	10
רו	rs: 0	%			V/C Round	d Off (decs.) :	3
OLA Movement							
FF Movemen	its: EBR	-,					
Date/Time:	AM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.38	180	2,204	0.081	N-S(1):	0.091 *
	TH	0.00	0	0	0.000	N-S(2):	0.081
	LT	1.62	212	2,336	0.091 *	E-W(1):	0.294 *
Westbound	RT	1.00	288	1,600	0.180	E-W(2):	0.206
	TH	3.00	980	4,800	0.204		
	LT	0.00	0	0	0.000 *	V/C:	0.385
Northbound	RT	0.00	0	0	0.000	Lost Time:	0.100
	TH	0.00	0	0	0.000 *	ITS:	0.000
Eastbound		0.00	<u> </u>	0	0.000	ICU:	0 405
Easibound	RT	0.00	-	-	0.000 0.294 *	ICU:	0.485
	TH LT	3.00	997 3	4,800		LOS:	^
	LI	0.00	3	1,600	0.002	LUS:	A
Date/Time:	PM PEA	K HOUR					
APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.51	229	2,416	0.093	N-S(1):	0.105 *
	TH	0.00	0	0	0.000	N-S(2):	0.093
	LT	1.49	226	2,146	0.105 *	E-W(1):	0.315
Westbound	RT	1.00	540	1,600	0.338 *	E-W(2):	0.342 *
	TH	3.00	1,294	4,800	0.270		

0

0

0

0

7

481

1,022

0

0

0

0

0 4,800

1,600

0.000

0.000

0.000

0.000

0.315

0.004 *

0.000 *

V/C:

ITS:

ICU:

LOS:

Lost Time:

0.447

0.100

0.000

0.547

А

* - Denotes critical movement

Northbound

Eastbound

0.00

0.00

0.00

0.00

0.00

3.00

0.00

LT

RT

ΤН

LT

RT

ΤH

LT

Project Title:AVCCD FMP EIRIntersection:18 - 15th St/SR-14 NB Ramps & Ave KDescription:Future with Project

Thru Lane:	1600 vph
Left Lane:	1600 vph
Double Lt Penalty:	10 %
ITS:	0 %
OLA Movements :	
FF Movements:	

N-S Split Phase :NE-W Split Phase :NLost Time (% of cycle) :10V/C Round Off (decs.) :3

Date/Time: AM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	
AFFNUAUI		LANLO	VOLUML	CAFACITI	V/C		
Southbound	RT	1.92	231	3,067	0.037	N-S(1):	0.250 *
Couling	ТН	0.08	10	133	0.075	N-S(2):	0.194
	LT	2.00	199	2,880	0.069 *	E-W(1):	0.178
Westbound	RT	1.00	210	1,600	0.131	E-W(2):	0.250 *
	TH	3.00	834	4,800	0.174 *		
	LT	0.00	0	0	0.000	V/C:	0.500
Northbound	RT	1.41	409	2,259	0.181	Lost Time:	0.100
	TH	1.59	460	2,541	0.181 *	ITS:	0.000
	LT	2.00	343	2,880	0.119		
Eastbound	RT	1.00	109	1,600	0.009	ICU:	0.600
	TH	3.00	852	4,800	0.178		
	LT	2.00	219	2,880	0.076 *	LOS:	А

Date/Time: PM PEAK HOUR

APPROACH	MVMT	LANES	VOLUME	CAPACITY	V/C	ICU ANA	LYSIS
Southbound	RT	1.91	471	3,057	0.127	N-S(1):	0.293
	TH	0.09	22	143	0.154 *	N-S(2):	0.296 *
	LT	2.00	353	2,880	0.123	E-W(1):	0.203
Westbound	RT	1.00	228	1,600	0.143	E-W(2):	0.292 *
	TH	3.00	1,143	4,800	0.238 *		
	LT	0.00	0	0	0.000	V/C:	0.588
Northbound	RT	1.52	413	2,432	0.170	Lost Time:	0.100
	ТН	1.48	402	2,368	0.170	ITS:	0.000
	LT	2.00	410	2,880	0.142 *		
Eastbound	RT	1.00	124	1,600	0.006	ICU:	0.688
	ТН	3.00	975	4,800	0.203		
	LT	2.00	156	2,880	0.054 *	LOS:	В
				_,			-

California Emissions Estimator Model (CalEEMod) Results

AVCCD 2016 FMP - 2030 Future Conditions - Los Angeles-Mojave Desert County, Annual

AVCCD 2016 FMP - 2030 Future Conditions

Los Angeles-Mojave Desert County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	68.49	1000sqft	1.57	68,485.00	0
High School	133.87	1000sqft	3.07	133,871.00	0
Library	51.15	1000sqft	1.17	51,146.00	0
Recreational Swimming Pool	3.00	1000sqft	0.07	3,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	7			Operational Year	2021
Utility Company	Southern California Edison				
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Note 1

Construction Phase - Note 2

Demolition -

Grading - Note 3

Architectural Coating - Note 4

Vehicle Trips - Note 5

Road Dust - Note 6

Area Coating - Note 7

Solid Waste - Note 8

Construction Off-road Equipment Mitigation -

Mobile Land Use Mitigation -

Mobile Commute Mitigation -

Area Mitigation - AVAQMD Rule 1113

Energy Mitigation -

Water Mitigation -

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	150.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	150.00
tblArchitecturalCoating	EF_Residential_Exterior	250.00	100.00
tblArchitecturalCoating	EF_Residential_Interior	250.00	50.00
tblAreaMitigation	UseLowVOCPaintNonresidentialExteriorV alue	250	150
tblAreaMitigation	UseLowVOCPaintNonresidentialInteriorV alue	250	150
tblAreaMitigation	UseLowVOCPaintResidentialExteriorValu e	250	100
tblAreaMitigation	UseLowVOCPaintResidentialInteriorValu e	250	50
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15

NumDays	20.00	40.00		
		• 		
NumDays	20.00	40.00		
NumDays	230.00	300.00		
NumDays	20.00	40.00		
NumDays	20.00	100.00		
PhaseEndDate	1/28/2019	2/25/2019		
PhaseEndDate	2/25/2019	4/22/2019		
PhaseEndDate	1/13/2020	6/15/2020		
PhaseEndDate	2/10/2020	8/10/2020		
PhaseEndDate	3/9/2020	12/28/2020		
PhaseStartDate	1/29/2019	2/26/2019		
PhaseStartDate	2/26/2019	4/23/2019		
PhaseStartDate	1/14/2020	6/16/2020		
PhaseStartDate	2/11/2020	8/11/2020		
MaterialExported	0.00	11,172.96		
MaterialImported	0.00	10,617.41		
MeanVehicleSpeed	40	15		
SolidWasteGenerationRate	17.10	0.00		
CC_TTP	48.00	17.20		
CNW_TTP	19.00	5.00		
CW_TTP	33.00	77.80		
DV_TP	39.00	0.00		
PB_TP	9.00	0.00		
PR_TP	52.00	100.00		
ST_TR	2.46	0.00		
tblVehicleTrips ST_TR		0.00		
ST_TR	46.55	0.00		
	NumDays NumDays PhaseEndDate PhaseStartDate PhaseStartDate PhaseStartDate PhaseStartDate MaterialExported MaterialImported MeanVehicleSpeed SolidWasteGenerationRate CC_TTP CNW_TTP DV_TP PB_TP PB_TP PR_TP ST_TR ST_TR	NumDays 230.00 NumDays 20.00 NumDays 20.00 NumDays 20.00 PhaseEndDate 1/28/2019 PhaseEndDate 2/25/2019 PhaseEndDate 2/10/2020 PhaseEndDate 2/10/2020 PhaseEndDate 3/9/2020 PhaseEndDate 1/28/2019 PhaseEndDate 2/26/2019 PhaseStartDate 1/29/2019 PhaseStartDate 1/14/2020 PhaseStartDate 2/11/2020 PhaseStartDate 2/11/2020 PhaseStartDate 2/11/2020 MaterialExported 0.00 MaterialImported 0.00 MaterialImported 0.00 MaterialImported 0.00 CC_TTP 48.00 CNW_TTP 19.00 CW_TTP 33.00 DV_TP 39.00 PB_TP 9.00 PB_TP 9.00 PR_TP 52.00 ST_TR 4.37		

tblVehicleTrips	ST_TR	9.10	1,078.67
tblVehicleTrips	SU_TR	1.05	0.00
tblVehicleTrips	SU_TR	1.79	0.00
tblVehicleTrips	SU_TR	25.49	0.00
tblVehicleTrips	SU_TR	13.60	1,078.67
tblVehicleTrips	WD_TR	11.03	0.00
tblVehicleTrips	WD_TR	12.89	0.00
tblVehicleTrips	WD_TR	56.24	0.00
tblVehicleTrips	WD_TR	33.82	1,078.67

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							MT	/yr		
2019	0.4062	4.1935	2.8933	6.9500e- 003	0.3184	0.1861	0.5045	0.1116	0.1741	0.2857	0.0000	636.3591	636.3591	0.1060	0.0000	639.0088
2020	1.9639	1.8056	1.6924	3.4900e- 003	0.0755	0.0889	0.1644	0.0204	0.0836	0.1041	0.0000	310.8001	310.8001	0.0534	0.0000	312.1347
Maximum	1.9639	4.1935	2.8933	6.9500e- 003	0.3184	0.1861	0.5045	0.1116	0.1741	0.2857	0.0000	636.3591	636.3591	0.1060	0.0000	639.0088

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Year					tor	ns/yr					MT/yr						
2019	0.4062	4.1935	2.8933	6.9500e- 003	0.3184	0.1861	0.5045	0.1116	0.1741	0.2857	0.0000	636.3587	636.3587	0.1060	0.0000	639.0084	
2020	1.9639	1.8056	1.6924	3.4900e- 003	0.0755	0.0889	0.1644	0.0204	0.0836	0.1041	0.0000	310.7999	310.7999	0.0534	0.0000	312.1345	
Maximum	1.9639	4.1935	2.8933	6.9500e- 003	0.3184	0.1861	0.5045	0.1116	0.1741	0.2857	0.0000	636.3587	636.3587	0.1060	0.0000	639.0084	
	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e	
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	1-1-2019	3-31-2019	1.5105	1.5105
2	4-1-2019	6-30-2019	1.1347	1.1347
3	7-1-2019	9-30-2019	0.9626	0.9626
4	10-1-2019	12-31-2019	0.9655	0.9655
5	1-1-2020	3-31-2020	0.8689	0.8689
6	4-1-2020	6-30-2020	0.8068	0.8068
7	7-1-2020	9-30-2020	0.9065	0.9065
		Highest	1.5105	1.5105

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category		tons/yr									MT/yr						
Area	1.2840	2.0000e- 005	2.3700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.5800e- 003	4.5800e- 003	1.0000e- 005	0.0000	4.8900e- 003	
Energy	0.0187	0.1701	0.1428	1.0200e- 003		0.0129	0.0129		0.0129	0.0129	0.0000	754.2092	754.2092	0.0270	8.2500e- 003	757.3452	
Mobile	1.0647	5.4848	14.5968	0.0502	4.0287	0.0430	4.0717	1.0800	0.0401	1.1201	0.0000	4,632.127 9	4,632.127 9	0.2483	0.0000	4,638.336 2	
Waste	,			 		0.0000	0.0000	 	0.0000	0.0000	57.8159	0.0000	57.8159	3.4168	0.0000	143.2364	
Water	y <u></u> , , ,					0.0000	0.0000		0.0000	0.0000	5.8356	152.4278	158.2635	0.6057	0.0155	178.0106	
Total	2.3674	5.6548	14.7420	0.0512	4.0287	0.0559	4.0846	1.0800	0.0530	1.1330	63.6515	5,538.769 5	5,602.421 0	4.2979	0.0237	5,716.933 3	

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	CO	S	02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5			PM2.5 Total	Bio- (O2 NB	io- CO2	Total CO2	CH4	1	N2O	CO2e
Category						ton	s/yr							İ		N	IT/yr			
Area	1.1665	2.0000e 005	- 2.3700 003		0000		1.0000e- 005	1.0000e- 005		1.00 00	00e- 05	1.0000e- 005	0.00		5800e- 003	4.5800e- 003	1.0000 005		0000	4.8900e- 003
Energy	0.0187	0.1701	0.142	-	200e- 103		0.0129	0.0129		0.0	129	0.0129	0.00	00 75	4.2092	754.2092	0.027		500e- 003	757.3452
Mobile	1.0647	5.4848	14.59	68 0.0)502	4.0287	0.0430	4.0717	1.0800	0.04	401	1.1201	0.00	00 4,6	32.127 9	4,632.127 9	0.248	30.	0000	4,638.336 2
Waste	f,						0.0000	0.0000		0.0	000	0.0000	57.8′	59 0	.0000	57.8159	3.416	8 0.	0000	143.2364
Water	f;						0.0000	0.0000		0.0	000	0.0000	5.45	05 14	2.7482	148.1986	0.565	7 0.	0144	166.6438
Total	2.2499	5.6548	14.74	20 0.0	0512	4.0287	0.0559	4.0846	1.0800	0.0	530	1.1330	63.20	64 5,5	29.089 9	5,592.356 2	4.257	90.	0227	5,705.566 5
	ROG		NOx	со	SO2					ugitive PM2.5	Exha PM		12.5 otal	Bio- CO2	NBio-	CO2 Tota	I CO2	CH4	N2	0 CO20
Percent Reduction	4.96		0.00	0.00	0.00) 0.	00 0.	.00 0	.00	0.00	0.0	00 0.	.00	0.61	0.1	7 0	.18	0.93	4.2	6 0.20

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/1/2019	2/25/2019	5	40	
2	Grading	Grading	2/26/2019	4/22/2019	5	40	
3	Building Construction	Building Construction	4/23/2019	6/15/2020	5	300	
4	Paving	Paving	6/16/2020	8/10/2020	5	40	
5	Architectural Coating	Architectural Coating	8/11/2020	12/28/2020	5	100	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 20

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 380,253; Non-Residential Outdoor: 126,751; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

AVCCD 2016 FMP -	2030 Future Conditio	ns - Los Anaeles-	Moiave Desert	County, Annual

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Demolition	Excavators	3	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Grading	Excavators	1	8.00	158	0.38
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	6	15.00	0.00	505.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	6	15.00	0.00	2,724.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	101.00	42.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	20.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Fugitive Dust					0.0546	0.0000	0.0546	8.2700e- 003	0.0000	8.2700e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0703	0.7157	0.4412	7.8000e- 004		0.0359	0.0359		0.0334	0.0334	0.0000	69.2527	69.2527	0.0193	0.0000	69.7343
Total	0.0703	0.7157	0.4412	7.8000e- 004	0.0546	0.0359	0.0905	8.2700e- 003	0.0334	0.0417	0.0000	69.2527	69.2527	0.0193	0.0000	69.7343

3.2 Demolition - 2019

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Hauling	2.4000e- 003	0.0799	0.0170	2.0000e- 004	4.3400e- 003	2.9000e- 004	4.6300e- 003	1.1900e- 003	2.7000e- 004	1.4700e- 003	0.0000	19.6618	19.6618	1.3900e- 003	0.0000	19.6965
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.1900e- 003	9.5000e- 004	0.0104	3.0000e- 005	2.4200e- 003	2.0000e- 005	2.4400e- 003	6.4000e- 004	2.0000e- 005	6.6000e- 004	0.0000	2.3387	2.3387	8.0000e- 005	0.0000	2.3407
Total	3.5900e- 003	0.0809	0.0274	2.3000e- 004	6.7600e- 003	3.1000e- 004	7.0700e- 003	1.8300e- 003	2.9000e- 004	2.1300e- 003	0.0000	22.0005	22.0005	1.4700e- 003	0.0000	22.0372

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust			- - - - -		0.0546	0.0000	0.0546	8.2700e- 003	0.0000	8.2700e- 003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0703	0.7157	0.4412	7.8000e- 004		0.0359	0.0359		0.0334	0.0334	0.0000	69.2526	69.2526	0.0193	0.0000	69.7342
Total	0.0703	0.7157	0.4412	7.8000e- 004	0.0546	0.0359	0.0905	8.2700e- 003	0.0334	0.0417	0.0000	69.2526	69.2526	0.0193	0.0000	69.7342

3.2 Demolition - 2019

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	2.4000e- 003	0.0799	0.0170	2.0000e- 004	4.3400e- 003	2.9000e- 004	4.6300e- 003	1.1900e- 003	2.7000e- 004	1.4700e- 003	0.0000	19.6618	19.6618	1.3900e- 003	0.0000	19.6965
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.1900e- 003	9.5000e- 004	0.0104	3.0000e- 005	2.4200e- 003	2.0000e- 005	2.4400e- 003	6.4000e- 004	2.0000e- 005	6.6000e- 004	0.0000	2.3387	2.3387	8.0000e- 005	0.0000	2.3407
Total	3.5900e- 003	0.0809	0.0274	2.3000e- 004	6.7600e- 003	3.1000e- 004	7.0700e- 003	1.8300e- 003	2.9000e- 004	2.1300e- 003	0.0000	22.0005	22.0005	1.4700e- 003	0.0000	22.0372

3.3 Grading - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Fugitive Dust					0.1323	0.0000	0.1323	0.0675	0.0000	0.0675	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0516	0.5670	0.3259	5.9000e- 004		0.0280	0.0280		0.0257	0.0257	0.0000	53.2845	53.2845	0.0169	0.0000	53.7060
Total	0.0516	0.5670	0.3259	5.9000e- 004	0.1323	0.0280	0.1602	0.0675	0.0257	0.0933	0.0000	53.2845	53.2845	0.0169	0.0000	53.7060

3.3 Grading - 2019

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0129	0.4311	0.0916	1.0800e- 003	0.0234	1.5400e- 003	0.0250	6.4300e- 003	1.4800e- 003	7.9000e- 003	0.0000	106.0570	106.0570	7.4800e- 003	0.0000	106.2439
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.1900e- 003	9.5000e- 004	0.0104	3.0000e- 005	2.4200e- 003	2.0000e- 005	2.4400e- 003	6.4000e- 004	2.0000e- 005	6.6000e- 004	0.0000	2.3387	2.3387	8.0000e- 005	0.0000	2.3407
Total	0.0141	0.4320	0.1020	1.1100e- 003	0.0258	1.5600e- 003	0.0274	7.0700e- 003	1.5000e- 003	8.5600e- 003	0.0000	108.3956	108.3956	7.5600e- 003	0.0000	108.5847

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	∵/yr		
Fugitive Dust					0.1323	0.0000	0.1323	0.0675	0.0000	0.0675	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0516	0.5670	0.3259	5.9000e- 004		0.0280	0.0280		0.0257	0.0257	0.0000	53.2845	53.2845	0.0169	0.0000	53.7059
Total	0.0516	0.5670	0.3259	5.9000e- 004	0.1323	0.0280	0.1602	0.0675	0.0257	0.0933	0.0000	53.2845	53.2845	0.0169	0.0000	53.7059

3.3 Grading - 2019

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0129	0.4311	0.0916	1.0800e- 003	0.0234	1.5400e- 003	0.0250	6.4300e- 003	1.4800e- 003	7.9000e- 003	0.0000	106.0570	106.0570	7.4800e- 003	0.0000	106.2439
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.1900e- 003	9.5000e- 004	0.0104	3.0000e- 005	2.4200e- 003	2.0000e- 005	2.4400e- 003	6.4000e- 004	2.0000e- 005	6.6000e- 004	0.0000	2.3387	2.3387	8.0000e- 005	0.0000	2.3407
Total	0.0141	0.4320	0.1020	1.1100e- 003	0.0258	1.5600e- 003	0.0274	7.0700e- 003	1.5000e- 003	8.5600e- 003	0.0000	108.3956	108.3956	7.5600e- 003	0.0000	108.5847

3.4 Building Construction - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Off-Road	0.2137	1.9076	1.5533	2.4400e- 003		0.1167	0.1167	1 1 1	0.1098	0.1098	0.0000	212.7693	212.7693	0.0518	0.0000	214.0651
Total	0.2137	1.9076	1.5533	2.4400e- 003		0.1167	0.1167		0.1098	0.1098	0.0000	212.7693	212.7693	0.0518	0.0000	214.0651

3.4 Building Construction - 2019

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0167	0.4615	0.1261	1.0300e- 003	0.0253	2.9800e- 003	0.0283	7.3100e- 003	2.8500e- 003	0.0102	0.0000	99.4009	99.4009	6.5100e- 003	0.0000	99.5636
Worker	0.0363	0.0289	0.3175	7.9000e- 004	0.0736	6.6000e- 004	0.0743	0.0196	6.1000e- 004	0.0202	0.0000	71.2556	71.2556	2.4900e- 003	0.0000	71.3179
Total	0.0529	0.4904	0.4436	1.8200e- 003	0.0989	3.6400e- 003	0.1026	0.0269	3.4600e- 003	0.0303	0.0000	170.6565	170.6565	9.0000e- 003	0.0000	170.8815

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.2137	1.9076	1.5533	2.4400e- 003		0.1167	0.1167		0.1098	0.1098	0.0000	212.7690	212.7690	0.0518	0.0000	214.0649
Total	0.2137	1.9076	1.5533	2.4400e- 003		0.1167	0.1167		0.1098	0.1098	0.0000	212.7690	212.7690	0.0518	0.0000	214.0649

3.4 Building Construction - 2019

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0167	0.4615	0.1261	1.0300e- 003	0.0253	2.9800e- 003	0.0283	7.3100e- 003	2.8500e- 003	0.0102	0.0000	99.4009	99.4009	6.5100e- 003	0.0000	99.5636
Worker	0.0363	0.0289	0.3175	7.9000e- 004	0.0736	6.6000e- 004	0.0743	0.0196	6.1000e- 004	0.0202	0.0000	71.2556	71.2556	2.4900e- 003	0.0000	71.3179
Total	0.0529	0.4904	0.4436	1.8200e- 003	0.0989	3.6400e- 003	0.1026	0.0269	3.4600e- 003	0.0303	0.0000	170.6565	170.6565	9.0000e- 003	0.0000	170.8815

3.4 Building Construction - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	'/yr		
Off-Road	0.1261	1.1416	1.0025	1.6000e- 003		0.0665	0.0665		0.0625	0.0625	0.0000	137.8079	137.8079	0.0336	0.0000	138.6485
Total	0.1261	1.1416	1.0025	1.6000e- 003		0.0665	0.0665		0.0625	0.0625	0.0000	137.8079	137.8079	0.0336	0.0000	138.6485

3.4 Building Construction - 2020

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr				MT	/yr					
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	9.3700e- 003	0.2779	0.0753	6.7000e- 004	0.0167	1.3300e- 003	0.0180	4.8000e- 003	1.2700e- 003	6.0800e- 003	0.0000	64.9181	64.9181	4.0500e- 003	0.0000	65.0193
Worker	0.0220	0.0169	0.1891	5.0000e- 004	0.0484	4.2000e- 004	0.0488	0.0129	3.9000e- 004	0.0133	0.0000	45.4249	45.4249	1.4600e- 003	0.0000	45.4613
Total	0.0313	0.2948	0.2644	1.1700e- 003	0.0651	1.7500e- 003	0.0668	0.0177	1.6600e- 003	0.0193	0.0000	110.3430	110.3430	5.5100e- 003	0.0000	110.4806

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Off-Road	0.1261	1.1416	1.0025	1.6000e- 003		0.0665	0.0665	1 1 1	0.0625	0.0625	0.0000	137.8078	137.8078	0.0336	0.0000	138.6483
Total	0.1261	1.1416	1.0025	1.6000e- 003		0.0665	0.0665		0.0625	0.0625	0.0000	137.8078	137.8078	0.0336	0.0000	138.6483

3.4 Building Construction - 2020

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	9.3700e- 003	0.2779	0.0753	6.7000e- 004	0.0167	1.3300e- 003	0.0180	4.8000e- 003	1.2700e- 003	6.0800e- 003	0.0000	64.9181	64.9181	4.0500e- 003	0.0000	65.0193
Worker	0.0220	0.0169	0.1891	5.0000e- 004	0.0484	4.2000e- 004	0.0488	0.0129	3.9000e- 004	0.0133	0.0000	45.4249	45.4249	1.4600e- 003	0.0000	45.4613
Total	0.0313	0.2948	0.2644	1.1700e- 003	0.0651	1.7500e- 003	0.0668	0.0177	1.6600e- 003	0.0193	0.0000	110.3430	110.3430	5.5100e- 003	0.0000	110.4806

3.5 Paving - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Off-Road	0.0271	0.2813	0.2930	4.6000e- 004		0.0151	0.0151		0.0139	0.0139	0.0000	40.0564	40.0564	0.0130	0.0000	40.3803
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0271	0.2813	0.2930	4.6000e- 004		0.0151	0.0151		0.0139	0.0139	0.0000	40.0564	40.0564	0.0130	0.0000	40.3803

3.5 Paving - 2020

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	'/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.1000e- 003	8.5000e- 004	9.4400e- 003	3.0000e- 005	2.4200e- 003	2.0000e- 005	2.4400e- 003	6.4000e- 004	2.0000e- 005	6.6000e- 004	0.0000	2.2677	2.2677	7.0000e- 005	0.0000	2.2695
Total	1.1000e- 003	8.5000e- 004	9.4400e- 003	3.0000e- 005	2.4200e- 003	2.0000e- 005	2.4400e- 003	6.4000e- 004	2.0000e- 005	6.6000e- 004	0.0000	2.2677	2.2677	7.0000e- 005	0.0000	2.2695

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	∵/yr		
Off-Road	0.0271	0.2813	0.2930	4.6000e- 004		0.0151	0.0151		0.0139	0.0139	0.0000	40.0564	40.0564	0.0130	0.0000	40.3803
Paving	0.0000					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0271	0.2813	0.2930	4.6000e- 004		0.0151	0.0151		0.0139	0.0139	0.0000	40.0564	40.0564	0.0130	0.0000	40.3803

3.5 Paving - 2020

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	1.1000e- 003	8.5000e- 004	9.4400e- 003	3.0000e- 005	2.4200e- 003	2.0000e- 005	2.4400e- 003	6.4000e- 004	2.0000e- 005	6.6000e- 004	0.0000	2.2677	2.2677	7.0000e- 005	0.0000	2.2695
Total	1.1000e- 003	8.5000e- 004	9.4400e- 003	3.0000e- 005	2.4200e- 003	2.0000e- 005	2.4400e- 003	6.4000e- 004	2.0000e- 005	6.6000e- 004	0.0000	2.2677	2.2677	7.0000e- 005	0.0000	2.2695

3.6 Architectural Coating - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
, worme bodding	1.7625					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0121	0.0842	0.0916	1.5000e- 004		5.5500e- 003	5.5500e- 003		5.5500e- 003	5.5500e- 003	0.0000	12.7663	12.7663	9.9000e- 004	0.0000	12.7910
Total	1.7746	0.0842	0.0916	1.5000e- 004		5.5500e- 003	5.5500e- 003		5.5500e- 003	5.5500e- 003	0.0000	12.7663	12.7663	9.9000e- 004	0.0000	12.7910

3.6 Architectural Coating - 2020

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.6500e- 003	2.8200e- 003	0.0315	8.0000e- 005	8.0500e- 003	7.0000e- 005	8.1200e- 003	2.1400e- 003	6.0000e- 005	2.2000e- 003	0.0000	7.5588	7.5588	2.4000e- 004	0.0000	7.5649
Total	3.6500e- 003	2.8200e- 003	0.0315	8.0000e- 005	8.0500e- 003	7.0000e- 005	8.1200e- 003	2.1400e- 003	6.0000e- 005	2.2000e- 003	0.0000	7.5588	7.5588	2.4000e- 004	0.0000	7.5649

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Archit. Coating	1.7625					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0121	0.0842	0.0916	1.5000e- 004		5.5500e- 003	5.5500e- 003		5.5500e- 003	5.5500e- 003	0.0000	12.7663	12.7663	9.9000e- 004	0.0000	12.7910
Total	1.7746	0.0842	0.0916	1.5000e- 004		5.5500e- 003	5.5500e- 003		5.5500e- 003	5.5500e- 003	0.0000	12.7663	12.7663	9.9000e- 004	0.0000	12.7910

3.6 Architectural Coating - 2020

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	3.6500e- 003	2.8200e- 003	0.0315	8.0000e- 005	8.0500e- 003	7.0000e- 005	8.1200e- 003	2.1400e- 003	6.0000e- 005	2.2000e- 003	0.0000	7.5588	7.5588	2.4000e- 004	0.0000	7.5649
Total	3.6500e- 003	2.8200e- 003	0.0315	8.0000e- 005	8.0500e- 003	7.0000e- 005	8.1200e- 003	2.1400e- 003	6.0000e- 005	2.2000e- 003	0.0000	7.5588	7.5588	2.4000e- 004	0.0000	7.5649

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	1.0647	5.4848	14.5968	0.0502	4.0287	0.0430	4.0717	1.0800	0.0401	1.1201	0.0000	4,632.127 9	4,632.127 9	0.2483	0.0000	4,638.336 2
Unmitigated	1.0647	5.4848	14.5968	0.0502	4.0287	0.0430	4.0717	1.0800	0.0401	1.1201	0.0000	4,632.127 9	4,632.127 9	0.2483	0.0000	4,638.336 2

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	0.00	0.00	0.00		
High School	0.00	0.00	0.00		
Library	0.00	0.00	0.00		
Recreational Swimming Pool	3,236.01	3,236.01	3236.01	10,614,832	10,614,832
Total	3,236.01	3,236.01	3,236.01	10,614,832	10,614,832

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4
High School	9.50	7.30	7.30	77.80	17.20	5.00	75	19	6
Library	9.50	7.30	7.30	52.00	43.00	5.00	44	44	12
Recreational Swimming Pool	9.50	7.30	7.30	77.80	17.20	5.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
High School	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
Library	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
Recreational Swimming Pool	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	569.0939	569.0939	0.0235	4.8600e- 003	571.1299
Electricity Unmitigated	F) 1 1 1 1 1					0.0000	0.0000		0.0000	0.0000	0.0000	569.0939	569.0939	0.0235	4.8600e- 003	571.1299
NaturalGas Mitigated	0.0187	0.1701	0.1428	1.0200e- 003		0.0129	0.0129		0.0129	0.0129	0.0000	185.1153	185.1153	3.5500e- 003	3.3900e- 003	186.2153
NaturalGas Unmitigated	0.0187	0.1701	0.1428	1.0200e- 003		0.0129	0.0129	 , , ,	0.0129	0.0129	0.0000	185.1153	185.1153	3.5500e- 003	3.3900e- 003	186.2153

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							МТ	'/yr		
General Office Building	1.17726e +006	6.3500e- 003	0.0577	0.0485	3.5000e- 004		4.3900e- 003	4.3900e- 003		4.3900e- 003	4.3900e- 003	0.0000	62.8229	62.8229	1.2000e- 003	1.1500e- 003	63.1963
High School	1.43242e +006	7.7200e- 003	0.0702	0.0590	4.2000e- 004		5.3400e- 003	5.3400e- 003		5.3400e- 003	5.3400e- 003	0.0000	76.4394	76.4394	1.4700e- 003	1.4000e- 003	76.8936
Library	859253	4.6300e- 003	0.0421	0.0354	2.5000e- 004		3.2000e- 003	3.2000e- 003		3.2000e- 003	3.2000e- 003	0.0000	45.8530	45.8530	8.8000e- 004	8.4000e- 004	46.1255
Recreational Swimming Pool	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0187	0.1701	0.1428	1.0200e- 003		0.0129	0.0129		0.0129	0.0129	0.0000	185.1153	185.1153	3.5500e- 003	3.3900e- 003	186.2153

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							МТ	'/yr		
General Office Building	1.17726e +006	6.3500e- 003	0.0577	0.0485	3.5000e- 004		4.3900e- 003	4.3900e- 003		4.3900e- 003	4.3900e- 003	0.0000	62.8229	62.8229	1.2000e- 003	1.1500e- 003	63.1963
High School	1.43242e +006	7.7200e- 003	0.0702	0.0590	4.2000e- 004		5.3400e- 003	5.3400e- 003		5.3400e- 003	5.3400e- 003	0.0000	76.4394	76.4394	1.4700e- 003	1.4000e- 003	76.8936
Library	859253	4.6300e- 003	0.0421	0.0354	2.5000e- 004		3.2000e- 003	3.2000e- 003		3.2000e- 003	3.2000e- 003	0.0000	45.8530	45.8530	8.8000e- 004	8.4000e- 004	46.1255
Recreational Swimming Pool	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0187	0.1701	0.1428	1.0200e- 003		0.0129	0.0129		0.0129	0.0129	0.0000	185.1153	185.1153	3.5500e- 003	3.3900e- 003	186.2153

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		ΜT	7/yr	
General Office Building	682795	217.5533	8.9800e- 003	1.8600e- 003	218.3316
High School	982613	313.0816	0.0129	2.6700e- 003	314.2017
Library	120705	38.4591	1.5900e- 003	3.3000e- 004	38.5967
Recreational Swimming Pool	0	0.0000	0.0000	0.0000	0.0000
Total		569.0939	0.0235	4.8600e- 003	571.1299

5.3 Energy by Land Use - Electricity

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		MT	7/yr	
General Office Building	682795	217.5533	8.9800e- 003	1.8600e- 003	218.3316
High School	982613	313.0816	0.0129	2.6700e- 003	314.2017
Library	120705	38.4591	1.5900e- 003	3.3000e- 004	38.5967
Recreational Swimming Pool	0	0.0000	0.0000	0.0000	0.0000
Total		569.0939	0.0235	4.8600e- 003	571.1299

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Residential Interior

- Use Low VOC Paint Residential Exterior
- Use Low VOC Paint Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Mitigated	1.1665	2.0000e- 005	2.3700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.5800e- 003	4.5800e- 003	1.0000e- 005	0.0000	4.8900e- 003
Unmitigated	1.2840	2.0000e- 005	2.3700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.5800e- 003	4.5800e- 003	1.0000e- 005	0.0000	4.8900e- 003

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							MT	/yr		
Architectural Coating	0.2938					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.9901					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.2000e- 004	2.0000e- 005	2.3700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.5800e- 003	4.5800e- 003	1.0000e- 005	0.0000	4.8900e- 003
Total	1.2840	2.0000e- 005	2.3700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.5800e- 003	4.5800e- 003	1.0000e- 005	0.0000	4.8900e- 003

6.2 Area by SubCategory

Mitigated

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					ton	s/yr							МТ	/yr		
Architectural Coating	0.1763					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.9901					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.2000e- 004	2.0000e- 005	2.3700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.5800e- 003	4.5800e- 003	1.0000e- 005	0.0000	4.8900e- 003
Total	1.1665	2.0000e- 005	2.3700e- 003	0.0000		1.0000e- 005	1.0000e- 005		1.0000e- 005	1.0000e- 005	0.0000	4.5800e- 003	4.5800e- 003	1.0000e- 005	0.0000	4.8900e- 003

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Toilet

Use Water Efficient Irrigation System

Page 31 of 35

AVCCD 2016 FMP - 2030 Future Conditions - Los Angeles-Mojave Desert County, Annual

	Total CO2	CH4	N2O	CO2e	
Category	MT/yr				
	148.1986	0.5657	0.0144	166.6438	
	158.2635	0.6057	0.0155	178.0106	

7.2 Water by Land Use

<u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal	MT/yr			
General Office Building	12.1712 / 7.45977	80.7636	0.3998	0.0100	93.7444
High School	4.44511 / 11.4303	60.3138	0.1473	3.9200e- 003	65.1648
Library	1.60043 / 2.50323	16.0087	0.0528	1.3600e- 003	17.7349
	0.177429/ 0.108747		5.8300e- 003	1.5000e- 004	1.3666
Total		158.2635	0.6057	0.0155	178.0106

7.2 Water by Land Use

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal	MT/yr			
General Office Building	11.3679 / 7.00473	75.5653	0.3734	9.3600e- 003	87.6897
High School	4.15173 / 10.733	56.5354	0.1376	3.6700e- 003	61.0669
Library	1.4948 / 2.35054	14.9964	0.0493	1.2700e- 003	16.6088
	0.165719/ 0.102113		5.4400e- 003	1.4000e- 004	1.2783
Total		148.1987	0.5657	0.0144	166.6438

8.0 Waste Detail

8.1 Mitigation Measures Waste

Page 33 of 35

AVCCD 2016 FMP - 2030 Future Conditions - Los Angeles-Mojave Desert County, Annual

Category/Year

	Total CO2	CH4	N2O	CO2e		
	MT/yr					
Mitigated	• • • • • •	3.4168	0.0000	143.2364		
Unmitigated		3.4168	0.0000	143.2364		

8.2 Waste by Land Use

<u>Unmitigated</u>

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	7/yr	
General Office Building	63.69	12.9285	0.7641	0.0000	32.0298
High School	174.03	35.3265	2.0877	0.0000	87.5200
Library	47.1	9.5609	0.5650	0.0000	23.6867
Recreational Swimming Pool	0	0.0000	0.0000	0.0000	0.0000
Total		57.8159	3.4168	0.0000	143.2364

Page 34 of 35

AVCCD 2016 FMP - 2030 Future Conditions - Los Angeles-Mojave Desert County, Annual

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons	MT/yr			
General Office Building	63.69	12.9285	0.7641	0.0000	32.0298
High School	174.03	35.3265	2.0877	0.0000	87.5200
Library	47.1	9.5609	0.5650	0.0000	23.6867
Recreational Swimming Pool	0	0.0000	0.0000	0.0000	0.0000
Total		57.8159	3.4168	0.0000	143.2364

9.0 Operational Offroad

Equipment Type Number Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
---------------------------------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type Number Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
---------------------------------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
----------------	--------	----------------	-----------------	---------------	-----------

User Defined Equipment

Page 35 of 35

AVCCD 2016 FMP - 2030 Future Conditions - Los Angeles-Mojave Desert County, Annual

Equipment Type Number

11.0 Vegetation

AVCCD 2016 FMP - 2030 Future Conditions

Los Angeles-Mojave Desert County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	68.49	1000sqft	1.57	68,485.00	0
High School	133.87	1000sqft	3.07	133,871.00	0
Library	51.15	1000sqft	1.17	51,146.00	0
Recreational Swimming Pool	3.00	1000sqft	0.07	3,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	7			Operational Year	2021
Utility Company	Southern California Edisor	n			
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Note 1

Construction Phase - Note 2

Demolition -

Grading - Note 3

Architectural Coating - Note 4

Vehicle Trips - Note 5

Road Dust - Note 6

Area Coating - Note 7

Solid Waste - Note 8

Construction Off-road Equipment Mitigation -

Mobile Land Use Mitigation -

Mobile Commute Mitigation -

Area Mitigation - AVAQMD Rule 1113

Energy Mitigation -

Water Mitigation -

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	150.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	150.00
tblArchitecturalCoating	EF_Residential_Exterior	250.00	100.00
tblArchitecturalCoating	EF_Residential_Interior	250.00	50.00
tblAreaMitigation	UseLowVOCPaintNonresidentialExteriorV alue	250	150
tblAreaMitigation	UseLowVOCPaintNonresidentialInteriorV alue	250	150
tblAreaMitigation	UseLowVOCPaintResidentialExteriorValu e	250	100
tblAreaMitigation	UseLowVOCPaintResidentialInteriorValu e	250	50
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15

tblConstructionPhase	NumDays	20.00	40.00
tblConstructionPhase	NumDays	20.00	40.00
tblConstructionPhase	NumDays	230.00	300.00
tblConstructionPhase	NumDays	20.00	40.00
tblConstructionPhase	NumDays	20.00	100.00
tblConstructionPhase	PhaseEndDate	1/28/2019	2/25/2019
tblConstructionPhase	PhaseEndDate	2/25/2019	4/22/2019
tblConstructionPhase	PhaseEndDate	1/13/2020	6/15/2020
tblConstructionPhase	PhaseEndDate	2/10/2020	8/10/2020
tblConstructionPhase	PhaseEndDate	3/9/2020	12/28/2020
tblConstructionPhase	PhaseStartDate	1/29/2019	2/26/2019
tblConstructionPhase	PhaseStartDate	2/26/2019	4/23/2019
tblConstructionPhase	PhaseStartDate	1/14/2020	6/16/2020
tblConstructionPhase	PhaseStartDate	2/11/2020	8/11/2020
tblGrading	MaterialExported	0.00	11,172.96
tblGrading	MaterialImported	0.00	10,617.41
tblRoadDust	MeanVehicleSpeed	40	15
tblSolidWaste	SolidWasteGenerationRate	17.10	0.00
tblVehicleTrips	CC_TTP	48.00	17.20
tblVehicleTrips	CNW_TTP	19.00	5.00
tblVehicleTrips	CW_TTP	33.00	77.80
tblVehicleTrips	DV_TP	39.00	0.00
tblVehicleTrips	PB_TP	9.00	0.00
tblVehicleTrips	PR_TP	52.00	100.00
tblVehicleTrips	ST_TR	2.46	0.00
tblVehicleTrips	ST_TR	4.37	0.00
tblVehicleTrips	ST_TR	46.55	0.00

AVCCD 2016 FMP	 2030 Future Conditions 	 Los Angeles-Moiave [Desert County, Summer

tblVehicleTrips	ST_TR	9.10	1,078.67
tblVehicleTrips	SU_TR	1.05	0.00
tblVehicleTrips	SU_TR	1.79	0.00
tblVehicleTrips	SU_TR	25.49	0.00
tblVehicleTrips	SU_TR	13.60	1,078.67
tblVehicleTrips	WD_TR	11.03	0.00
tblVehicleTrips	WD_TR	12.89	0.00
tblVehicleTrips	WD_TR	56.24	0.00
tblVehicleTrips	WD_TR	33.82	1,078.67

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/c	lay		
2019	3.6919	49.2477	23.4337	0.0854	7.9278	1.8102	9.4028	3.7359	1.6842	5.0957	0.0000	8,958.754 6	8,958.754 6	1.3393	0.0000	8,992.237 6
2020	35.5652	24.0172	21.4082	0.0471	1.1141	1.1463	2.2604	0.3020	1.0781	1.3800	0.0000	4,648.057 3	4,648.057 3	0.7239	0.0000	4,666.154 4
Maximum	35.5652	49.2477	23.4337	0.0854	7.9278	1.8102	9.4028	3.7359	1.6842	5.0957	0.0000	8,958.754 6	8,958.754 6	1.3393	0.0000	8,992.237 6

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	′day							lb/	day		
2019	3.6919	49.2477	23.4337	0.0854	7.9278	1.8102	9.4028	3.7359	1.6842	5.0957	0.0000	8,958.754 6	8,958.754 6	1.3393	0.0000	8,992.237 6
2020	35.5652	24.0172	21.4082	0.0471	1.1141	1.1463	2.2604	0.3020	1.0781	1.3800	0.0000	4,648.057 3	4,648.057 3	0.7239	0.0000	4,666.154 4
Maximum	35.5652	49.2477	23.4337	0.0854	7.9278	1.8102	9.4028	3.7359	1.6842	5.0957	0.0000	8,958.754 6	8,958.754 6	1.3393	0.0000	8,992.237 6
	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e	
Category		lb/day									lb/day						
Area	7.0370	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599	
Energy	0.1025	0.9318	0.7827	5.5900e- 003		0.0708	0.0708		0.0708	0.0708		1,118.107 9	1,118.107 9	0.0214	0.0205	1,124.752 2	
Mobile	6.1629	28.8437	83.2105	0.2860	22.5716	0.2358	22.8074	6.0408	0.2201	6.2609		29,074.93 66	29,074.93 66	1.5153		29,112.81 79	
Total	13.3024	29.7757	84.0195	0.2916	22.5716	0.3067	22.8783	6.0408	0.2910	6.3318		30,193.10 06	30,193.10 06	1.5368	0.0205	30,237.63 00	

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Area	6.3931	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599
Energy	0.1025	0.9318	0.7827	5.5900e- 003		0.0708	0.0708		0.0708	0.0708		1,118.107 9	1,118.107 9	0.0214	0.0205	1,124.752 2
Mobile	6.1629	28.8437	83.2105	0.2860	22.5716	0.2358	22.8074	6.0408	0.2201	6.2609		29,074.93 66	29,074.93 66	1.5153		29,112.81 79
Total	12.6586	29.7757	84.0195	0.2916	22.5716	0.3067	22.8783	6.0408	0.2910	6.3318		30,193.10 06	30,193.10 06	1.5368	0.0205	30,237.63 00

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	4.84	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/1/2019	2/25/2019	5	40	
2	Grading	Grading	2/26/2019	4/22/2019	5	40	
3	Building Construction	Building Construction	4/23/2019	6/15/2020	5	300	
4	Paving	Paving	6/16/2020	8/10/2020	5	40	
5	Architectural Coating	Architectural Coating	8/11/2020	12/28/2020	5	100	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 20

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 380,253; Non-Residential Outdoor: 126,751; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

AVCCD 2016 FMP -	2030 Future Conditions	- Los Angeles-Mojave	Desert County, Summer

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Demolition	Excavators	3	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Grading	Excavators	1	8.00	158	0.38
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	6	15.00	0.00	505.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	6	15.00	0.00	2,724.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	101.00	42.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	20.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2019

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					2.7304	0.0000	2.7304	0.4134	0.0000	0.4134			0.0000			0.0000
Off-Road	3.5134	35.7830	22.0600	0.0388		1.7949	1.7949		1.6697	1.6697		3,816.899 4	3,816.899 4	1.0618		3,843.445 1
Total	3.5134	35.7830	22.0600	0.0388	2.7304	1.7949	4.5253	0.4134	1.6697	2.0831		3,816.899 4	3,816.899 4	1.0618		3,843.445 1

3.2 Demolition - 2019

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.1186	3.8668	0.8244	0.0101	0.2207	0.0142	0.2349	0.0605	0.0136	0.0741		1,091.446 1	1,091.446 1	0.0752		1,093.325 3
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0599	0.0418	0.5492	1.3500e- 003	0.1232	1.0900e- 003	0.1243	0.0327	1.0000e- 003	0.0337		134.6227	134.6227	4.6900e- 003		134.7401
Total	0.1786	3.9086	1.3736	0.0114	0.3440	0.0153	0.3592	0.0932	0.0146	0.1078		1,226.068 8	1,226.068 8	0.0799		1,228.065 3

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					2.7304	0.0000	2.7304	0.4134	0.0000	0.4134		- - - - -	0.0000			0.0000
Off-Road	3.5134	35.7830	22.0600	0.0388		1.7949	1.7949		1.6697	1.6697	0.0000	3,816.899 4	3,816.899 4	1.0618		3,843.445 1
Total	3.5134	35.7830	22.0600	0.0388	2.7304	1.7949	4.5253	0.4134	1.6697	2.0831	0.0000	3,816.899 4	3,816.899 4	1.0618		3,843.445 1

3.2 Demolition - 2019

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.1186	3.8668	0.8244	0.0101	0.2207	0.0142	0.2349	0.0605	0.0136	0.0741		1,091.446 1	1,091.446 1	0.0752		1,093.325 3
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0599	0.0418	0.5492	1.3500e- 003	0.1232	1.0900e- 003	0.1243	0.0327	1.0000e- 003	0.0337		134.6227	134.6227	4.6900e- 003		134.7401
Total	0.1786	3.9086	1.3736	0.0114	0.3440	0.0153	0.3592	0.0932	0.0146	0.1078		1,226.068 8	1,226.068 8	0.0799		1,228.065 3

3.3 Grading - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					6.6139	0.0000	6.6139	3.3768	0.0000	3.3768			0.0000			0.0000
Off-Road	2.5805	28.3480	16.2934	0.0297		1.3974	1.3974		1.2856	1.2856		2,936.806 8	2,936.806 8	0.9292		2,960.036 1
Total	2.5805	28.3480	16.2934	0.0297	6.6139	1.3974	8.0113	3.3768	1.2856	4.6624		2,936.806 8	2,936.806 8	0.9292		2,960.036 1

3.3 Grading - 2019

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.6399	20.8579	4.4471	0.0544	1.1907	0.0765	1.2672	0.3264	0.0732	0.3996		5,887.325 0	5,887.325 0	0.4055		5,897.461 4
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0599	0.0418	0.5492	1.3500e- 003	0.1232	1.0900e- 003	0.1243	0.0327	1.0000e- 003	0.0337		134.6227	134.6227	4.6900e- 003		134.7401
Total	0.6999	20.8997	4.9963	0.0558	1.3139	0.0776	1.3915	0.3591	0.0742	0.4333		6,021.947 8	6,021.947 8	0.4101		6,032.201 4

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					6.6139	0.0000	6.6139	3.3768	0.0000	3.3768			0.0000			0.0000
Off-Road	2.5805	28.3480	16.2934	0.0297		1.3974	1.3974		1.2856	1.2856	0.0000	2,936.806 8	2,936.806 8	0.9292		2,960.036 1
Total	2.5805	28.3480	16.2934	0.0297	6.6139	1.3974	8.0113	3.3768	1.2856	4.6624	0.0000	2,936.806 8	2,936.806 8	0.9292		2,960.036 1

3.3 Grading - 2019

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.6399	20.8579	4.4471	0.0544	1.1907	0.0765	1.2672	0.3264	0.0732	0.3996		5,887.325 0	5,887.325 0	0.4055		5,897.461 4
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0599	0.0418	0.5492	1.3500e- 003	0.1232	1.0900e- 003	0.1243	0.0327	1.0000e- 003	0.0337		134.6227	134.6227	4.6900e- 003		134.7401
Total	0.6999	20.8997	4.9963	0.0558	1.3139	0.0776	1.3915	0.3591	0.0742	0.4333		6,021.947 8	6,021.947 8	0.4101		6,032.201 4

3.4 Building Construction - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	day		
Off-Road	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127		2,591.580 2	2,591.580 2	0.6313		2,607.363 5
Total	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127		2,591.580 2	2,591.580 2	0.6313		2,607.363 5

3.4 Building Construction - 2019

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1808	4.9916	1.3268	0.0115	0.2844	0.0327	0.3171	0.0819	0.0313	0.1131		1,224.022 7	1,224.022 7	0.0770		1,225.948 1
Worker	0.4035	0.2813	3.6978	9.1100e- 003	0.8297	7.3300e- 003	0.8370	0.2201	6.7600e- 003	0.2268		906.4598	906.4598	0.0316		907.2497
Total	0.5843	5.2729	5.0246	0.0206	1.1141	0.0400	1.1541	0.3020	0.0380	0.3400		2,130.482 5	2,130.482 5	0.1086		2,133.197 8

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899	1 1 1	1.2127	1.2127	0.0000	2,591.580 2	2,591.580 2	0.6313		2,607.363 5
Total	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127	0.0000	2,591.580 2	2,591.580 2	0.6313		2,607.363 5

3.4 Building Construction - 2019

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1808	4.9916	1.3268	0.0115	0.2844	0.0327	0.3171	0.0819	0.0313	0.1131		1,224.022 7	1,224.022 7	0.0770		1,225.948 1
Worker	0.4035	0.2813	3.6978	9.1100e- 003	0.8297	7.3300e- 003	0.8370	0.2201	6.7600e- 003	0.2268		906.4598	906.4598	0.0316		907.2497
Total	0.5843	5.2729	5.0246	0.0206	1.1141	0.0400	1.1541	0.3020	0.0380	0.3400		2,130.482 5	2,130.482 5	0.1086		2,133.197 8

3.4 Building Construction - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503		2,553.063 1	2,553.063 1	0.6229		2,568.634 5
Total	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503		2,553.063 1	2,553.063 1	0.6229		2,568.634 5

3.4 Building Construction - 2020

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1545	4.5805	1.2037	0.0114	0.2844	0.0222	0.3066	0.0819	0.0212	0.1031		1,216.051 4	1,216.051 4	0.0729		1,217.874 4
Worker	0.3714	0.2507	3.3560	8.8300e- 003	0.8297	7.1100e- 003	0.8368	0.2201	6.5500e- 003	0.2266		878.9428	878.9428	0.0281		879.6455
Total	0.5260	4.8311	4.5597	0.0202	1.1141	0.0293	1.1434	0.3020	0.0278	0.3297		2,094.994 2	2,094.994 2	0.1010		2,097.519 9

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503	0.0000	2,553.063 1	2,553.063 1	0.6229		2,568.634 5
Total	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503	0.0000	2,553.063 1	2,553.063 1	0.6229		2,568.634 5

3.4 Building Construction - 2020

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1545	4.5805	1.2037	0.0114	0.2844	0.0222	0.3066	0.0819	0.0212	0.1031		1,216.051 4	1,216.051 4	0.0729		1,217.874 4
Worker	0.3714	0.2507	3.3560	8.8300e- 003	0.8297	7.1100e- 003	0.8368	0.2201	6.5500e- 003	0.2266		878.9428	878.9428	0.0281		879.6455
Total	0.5260	4.8311	4.5597	0.0202	1.1141	0.0293	1.1434	0.3020	0.0278	0.3297		2,094.994 2	2,094.994 2	0.1010		2,097.519 9

3.5 Paving - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	1.3566	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926		2,207.733 4	2,207.733 4	0.7140		2,225.584 1
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.3566	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926		2,207.733 4	2,207.733 4	0.7140		2,225.584 1

3.5 Paving - 2020

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0552	0.0372	0.4984	1.3100e- 003	0.1232	1.0600e- 003	0.1243	0.0327	9.7000e- 004	0.0337		130.5361	130.5361	4.1700e- 003		130.6404
Total	0.0552	0.0372	0.4984	1.3100e- 003	0.1232	1.0600e- 003	0.1243	0.0327	9.7000e- 004	0.0337		130.5361	130.5361	4.1700e- 003		130.6404

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Off-Road	1.3566	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926	0.0000	2,207.733 4	2,207.733 4	0.7140		2,225.584 1
Paving	0.0000					0.0000	0.0000		0.0000	0.0000		 - - - -	0.0000			0.0000
Total	1.3566	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926	0.0000	2,207.733 4	2,207.733 4	0.7140		2,225.584 1

3.5 Paving - 2020

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0552	0.0372	0.4984	1.3100e- 003	0.1232	1.0600e- 003	0.1243	0.0327	9.7000e- 004	0.0337		130.5361	130.5361	4.1700e- 003		130.6404
Total	0.0552	0.0372	0.4984	1.3100e- 003	0.1232	1.0600e- 003	0.1243	0.0327	9.7000e- 004	0.0337		130.5361	130.5361	4.1700e- 003		130.6404

3.6 Architectural Coating - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Archit. Coating	35.2495					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2422	1.6838	1.8314	2.9700e- 003		0.1109	0.1109		0.1109	0.1109		281.4481	281.4481	0.0218		281.9928
Total	35.4916	1.6838	1.8314	2.9700e- 003		0.1109	0.1109		0.1109	0.1109		281.4481	281.4481	0.0218		281.9928

3.6 Architectural Coating - 2020

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0736	0.0496	0.6646	1.7500e- 003	0.1643	1.4100e- 003	0.1657	0.0436	1.3000e- 003	0.0449		174.0481	174.0481	5.5700e- 003		174.1872
Total	0.0736	0.0496	0.6646	1.7500e- 003	0.1643	1.4100e- 003	0.1657	0.0436	1.3000e- 003	0.0449		174.0481	174.0481	5.5700e- 003		174.1872

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Archit. Coating	35.2495					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2422	1.6838	1.8314	2.9700e- 003		0.1109	0.1109		0.1109	0.1109	0.0000	281.4481	281.4481	0.0218		281.9928
Total	35.4916	1.6838	1.8314	2.9700e- 003		0.1109	0.1109		0.1109	0.1109	0.0000	281.4481	281.4481	0.0218		281.9928

3.6 Architectural Coating - 2020

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0736	0.0496	0.6646	1.7500e- 003	0.1643	1.4100e- 003	0.1657	0.0436	1.3000e- 003	0.0449		174.0481	174.0481	5.5700e- 003		174.1872
Total	0.0736	0.0496	0.6646	1.7500e- 003	0.1643	1.4100e- 003	0.1657	0.0436	1.3000e- 003	0.0449		174.0481	174.0481	5.5700e- 003		174.1872

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Mitigated	6.1629	28.8437	83.2105	0.2860	22.5716	0.2358	22.8074	6.0408	0.2201	6.2609		29,074.93 66	29,074.93 66	1.5153		29,112.81 79
Unmitigated	6.1629	28.8437	83.2105	0.2860	22.5716	0.2358	22.8074	6.0408	0.2201	6.2609		29,074.93 66	29,074.93 66	1.5153		29,112.81 79

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	0.00	0.00	0.00		
High School	0.00	0.00	0.00		
Library	0.00	0.00	0.00		
Recreational Swimming Pool	3,236.01	3,236.01	3236.01	10,614,832	10,614,832
Total	3,236.01	3,236.01	3,236.01	10,614,832	10,614,832

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4
High School	9.50	7.30	7.30	77.80	17.20	5.00	75	19	6
Library	9.50	7.30	7.30	52.00	43.00	5.00	44	44	12
Recreational Swimming Pool	9.50	7.30	7.30	77.80	17.20	5.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
High School	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
Library	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
Recreational Swimming Pool	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
	0.1025	0.9318	0.7827	5.5900e- 003		0.0708	0.0708		0.0708	0.0708		1,118.107 9	1,118.107 9	0.0214	0.0205	1,124.752 2
NaturalGas Unmitigated	0.1025	0.9318	0.7827	5.5900e- 003		0.0708	0.0708		0.0708	0.0708		1,118.107 9	1,118.107 9	0.0214	0.0205	1,124.752 2

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
General Office Building	3225.36	0.0348	0.3162	0.2656	1.9000e- 003		0.0240	0.0240	, , ,	0.0240	0.0240		379.4544	379.4544	7.2700e- 003	6.9600e- 003	381.7093
High School	3924.44	0.0423	0.3848	0.3232	2.3100e- 003		0.0292	0.0292		0.0292	0.0292		461.6985	461.6985	8.8500e- 003	8.4600e- 003	464.4422
Library	2354.12	0.0254	0.2308	0.1939	1.3800e- 003		0.0175	0.0175		0.0175	0.0175		276.9550	276.9550	5.3100e- 003	5.0800e- 003	278.6008
Recreational Swimming Pool	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.1025	0.9318	0.7827	5.5900e- 003		0.0708	0.0708		0.0708	0.0708		1,118.107 9	1,118.107 9	0.0214	0.0205	1,124.752 2

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day							lb/c	lay		
General Office Building	3.22536	0.0348	0.3162	0.2656	1.9000e- 003		0.0240	0.0240		0.0240	0.0240		379.4544	379.4544	7.2700e- 003	6.9600e- 003	381.7093
High School	3.92444	0.0423	0.3848	0.3232	2.3100e- 003		0.0292	0.0292		0.0292	0.0292		461.6985	461.6985	8.8500e- 003	8.4600e- 003	464.4422
Library	2.35412	0.0254	0.2308	0.1939	1.3800e- 003		0.0175	0.0175		0.0175	0.0175		276.9550	276.9550	5.3100e- 003	5.0800e- 003	278.6008
Recreational Swimming Pool	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.1025	0.9318	0.7827	5.5900e- 003		0.0708	0.0708		0.0708	0.0708		1,118.107 9	1,118.107 9	0.0214	0.0205	1,124.752 2

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Residential Interior

Use Low VOC Paint - Residential Exterior

Use Low VOC Paint - Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	lay		
Mitigated	6.3931	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599
Unmitigated	7.0370	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005	 - - - -	9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/d	day		
Architectural Coating	1.6096					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	5.4249					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.4600e- 003	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005	,	9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004	, , , ,	0.0599
Total	7.0370	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/c	lay		
	0.9657					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	5.4249	,,,,,,,				0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.4600e- 003	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599
Total	6.3931	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Toilet

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

1							
	Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
Boilers						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					
11.0 Vegetation						

AVCCD 2016 FMP - 2030 Future Conditions

Los Angeles-Mojave Desert County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	68.49	1000sqft	1.57	68,485.00	0
High School	133.87	1000sqft	3.07	133,871.00	0
Library	51.15	1000sqft	1.17	51,146.00	0
Recreational Swimming Pool	3.00	1000sqft	0.07	3,000.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	7			Operational Year	2021
Utility Company	Southern California Edisor	n			
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Note 1

Construction Phase - Note 2

Demolition -

Grading - Note 3

Architectural Coating - Note 4

Vehicle Trips - Note 5

Road Dust - Note 6

Area Coating - Note 7

Solid Waste - Note 8

Construction Off-road Equipment Mitigation -

Mobile Land Use Mitigation -

Mobile Commute Mitigation -

Area Mitigation - AVAQMD Rule 1113

Energy Mitigation -

Water Mitigation -

Table Name	Column Name	Default Value	New Value
tblArchitecturalCoating	EF_Nonresidential_Exterior	250.00	150.00
tblArchitecturalCoating	EF_Nonresidential_Interior	250.00	150.00
tblArchitecturalCoating	EF_Residential_Exterior	250.00	100.00
tblArchitecturalCoating	EF_Residential_Interior	250.00	50.00
tblAreaMitigation	UseLowVOCPaintNonresidentialExteriorV alue	250	150
tblAreaMitigation	UseLowVOCPaintNonresidentialInteriorV alue	250	150
tblAreaMitigation	UseLowVOCPaintResidentialExteriorValu e	250	100
tblAreaMitigation	UseLowVOCPaintResidentialInteriorValu e	250	50
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15

NumDays	20.00	40.00
		+0.00
NumDays	20.00	40.00
NumDays	230.00	300.00
NumDays	20.00	40.00
NumDays	20.00	100.00
PhaseEndDate	1/28/2019	2/25/2019
PhaseEndDate	2/25/2019	4/22/2019
PhaseEndDate	1/13/2020	6/15/2020
PhaseEndDate	2/10/2020	8/10/2020
PhaseEndDate	3/9/2020	12/28/2020
PhaseStartDate	1/29/2019	2/26/2019
PhaseStartDate	2/26/2019	4/23/2019
PhaseStartDate	1/14/2020	6/16/2020
PhaseStartDate	2/11/2020	8/11/2020
MaterialExported	0.00	11,172.96
MaterialImported	0.00	10,617.41
MeanVehicleSpeed	40	15
SolidWasteGenerationRate	17.10	0.00
CC_TTP	48.00	17.20
CNW_TTP	19.00	5.00
CW_TTP	33.00	77.80
DV_TP	39.00	0.00
PB_TP	9.00	0.00
PR_TP	52.00	100.00
ST_TR	2.46	0.00
ST_TR	4.37	0.00
ST_TR	46.55	0.00
	NumDays NumDays PhaseEndDate PhaseStartDate PhaseStartDate PhaseStartDate PhaseStartDate MaterialExported MaterialImported MeanVehicleSpeed SolidWasteGenerationRate CC_TTP CNW_TTP DV_TP PB_TP PB_TP PR_TP ST_TR ST_TR	NumDays 230.00 NumDays 20.00 NumDays 20.00 NumDays 20.00 PhaseEndDate 1/28/2019 PhaseEndDate 2/25/2019 PhaseEndDate 2/10/2020 PhaseEndDate 2/10/2020 PhaseEndDate 3/9/2020 PhaseEndDate 1/28/2019 PhaseEndDate 2/26/2019 PhaseStartDate 1/29/2019 PhaseStartDate 1/14/2020 PhaseStartDate 2/11/2020 PhaseStartDate 2/11/2020 PhaseStartDate 2/11/2020 MaterialExported 0.00 MaterialImported 0.00 MaterialImported 0.00 MaterialImported 0.00 CC_TTP 48.00 CNW_TTP 19.00 CW_TTP 33.00 DV_TP 39.00 PB_TP 9.00 PB_TP 9.00 PR_TP 52.00 ST_TR 4.37

tblVehicleTrips	ST_TR	9.10	1,078.67
tblVehicleTrips	SU_TR	1.05	0.00
tblVehicleTrips	SU_TR	1.79	0.00
tblVehicleTrips	SU_TR	25.49	0.00
tblVehicleTrips	SU_TR	13.60	1,078.67
tblVehicleTrips	WD_TR	11.03	0.00
tblVehicleTrips	WD_TR	12.89	0.00
tblVehicleTrips	WD_TR	56.24	0.00
tblVehicleTrips	WD_TR	33.82	1,078.67

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/d	day							lb/c	lay		
2019	3.7005	49.5304	23.4490	0.0844	7.9278	1.8105	9.4042	3.7359	1.6845	5.0970	0.0000	8,851.081 9	8,851.081 9	1.3545	0.0000	8,884.945 0
2020	35.5722	24.0476	21.2754	0.0463	1.1141	1.1467	2.2608	0.3020	1.0784	1.3804	0.0000	4,565.142 7	4,565.142 7	0.7270	0.0000	4,583.318 1
Maximum	35.5722	49.5304	23.4490	0.0844	7.9278	1.8105	9.4042	3.7359	1.6845	5.0970	0.0000	8,851.081 9	8,851.081 9	1.3545	0.0000	8,884.945 0

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/	′day							lb/	day		
2019	3.7005	49.5304	23.4490	0.0844	7.9278	1.8105	9.4042	3.7359	1.6845	5.0970	0.0000	8,851.081 9	8,851.081 9	1.3545	0.0000	8,884.945 0
2020	35.5722	24.0476	21.2754	0.0463	1.1141	1.1467	2.2608	0.3020	1.0784	1.3804	0.0000	4,565.142 7	4,565.142 7	0.7270	0.0000	4,583.318 1
Maximum	35.5722	49.5304	23.4490	0.0844	7.9278	1.8105	9.4042	3.7359	1.6845	5.0970	0.0000	8,851.081 9	8,851.081 9	1.3545	0.0000	8,884.945 0
	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day lb/day															
Area	7.0370	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599
Energy	0.1025	0.9318	0.7827	5.5900e- 003		0.0708	0.0708		0.0708	0.0708		1,118.107 9	1,118.107 9	0.0214	0.0205	1,124.752 2
Mobile	5.9881	29.5815	79.0831	0.2719	22.5716	0.2370	22.8086	6.0408	0.2213	6.2621		27,665.16 29	27,665.16 29	1.5097		27,702.90 50
Total	13.1276	30.5135	79.8921	0.2775	22.5716	0.3079	22.8795	6.0408	0.2922	6.3330		28,783.32 69	28,783.32 69	1.5313	0.0205	28,827.71 71

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/d	day		
Area	6.3931	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599
Energy	0.1025	0.9318	0.7827	5.5900e- 003		0.0708	0.0708		0.0708	0.0708		1,118.107 9	1,118.107 9	0.0214	0.0205	1,124.752 2
Mobile	5.9881	29.5815	79.0831	0.2719	22.5716	0.2370	22.8086	6.0408	0.2213	6.2621		27,665.16 29	27,665.16 29	1.5097		27,702.90 50
Total	12.4837	30.5135	79.8921	0.2775	22.5716	0.3079	22.8795	6.0408	0.2922	6.3330		28,783.32 69	28,783.32 69	1.5313	0.0205	28,827.71 71

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	4.90	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/1/2019	2/25/2019	5	40	
2	Grading	Grading	2/26/2019	4/22/2019	5	40	
3	Building Construction	Building Construction	4/23/2019	6/15/2020	5	300	
4	Paving	Paving	6/16/2020	8/10/2020	5	40	
5	Architectural Coating	Architectural Coating	8/11/2020	12/28/2020	5	100	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 20

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 380,253; Non-Residential Outdoor: 126,751; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

AVCCD 2016 FMP ·	 2030 Future Conditions 	 Los Angeles-Moiave 	Desert County, Winter

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Rubber Tired Dozers	2	8.00	247	0.40
Demolition	Excavators	3	8.00	158	0.38
Grading	Graders	1	8.00	187	0.41
Grading	Rubber Tired Dozers	1	8.00	247	0.40
Grading	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Building Construction	Cranes	1	7.00	231	0.29
Building Construction	Forklifts	3	8.00	89	0.20
Building Construction	Generator Sets	1	8.00	84	0.74
Building Construction	Tractors/Loaders/Backhoes	3	7.00	97	0.37
Building Construction	Welders	1	8.00	46	0.45
Grading	Excavators	1	8.00	158	0.38
Paving	Pavers	2	8.00	130	0.42
Paving	Paving Equipment	2	8.00	132	0.36
Paving	Rollers	2	8.00	80	0.38
Architectural Coating	Air Compressors	1	6.00	78	0.48

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length	Worker Vehicle Class	Vendor Vehicle Class	Hauling Vehicle Class
Demolition	6	15.00	0.00	505.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Grading	6	15.00	0.00	2,724.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Building Construction	9	101.00	42.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Paving	6	15.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT
Architectural Coating	1	20.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

CalEEMod Version: CalEEMod.2016.3.2

Page 9 of 28

AVCCD 2016 FMP - 2030 Future Conditions - Los Angeles-Mojave Desert County, Winter

3.1 Mitigation Measures Construction

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2019

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day									lb/day						
Fugitive Dust					2.7304	0.0000	2.7304	0.4134	0.0000	0.4134			0.0000			0.0000
Off-Road	3.5134	35.7830	22.0600	0.0388		1.7949	1.7949		1.6697	1.6697		3,816.899 4	3,816.899 4	1.0618		3,843.445 1
Total	3.5134	35.7830	22.0600	0.0388	2.7304	1.7949	4.5253	0.4134	1.6697	2.0831		3,816.899 4	3,816.899 4	1.0618		3,843.445 1

3.2 Demolition - 2019

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day									lb/day						
Hauling	0.1216	3.9184	0.8802	9.9200e- 003	0.2207	0.0145	0.2352	0.0605	0.0138	0.0743		1,072.935 2	1,072.935 2	0.0780		1,074.886 0
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0656	0.0463	0.5089	1.2700e- 003	0.1232	1.0900e- 003	0.1243	0.0327	1.0000e- 003	0.0337		126.7988	126.7988	4.4400e- 003		126.9099
Total	0.1872	3.9647	1.3890	0.0112	0.3440	0.0156	0.3595	0.0932	0.0148	0.1080		1,199.734 0	1,199.734 0	0.0825		1,201.795 9

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	lb/day									lb/day						
Fugitive Dust					2.7304	0.0000	2.7304	0.4134	0.0000	0.4134			0.0000			0.0000
Off-Road	3.5134	35.7830	22.0600	0.0388		1.7949	1.7949		1.6697	1.6697	0.0000	3,816.899 4	3,816.899 4	1.0618		3,843.445 1
Total	3.5134	35.7830	22.0600	0.0388	2.7304	1.7949	4.5253	0.4134	1.6697	2.0831	0.0000	3,816.899 4	3,816.899 4	1.0618		3,843.445 1

3.2 Demolition - 2019

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.1216	3.9184	0.8802	9.9200e- 003	0.2207	0.0145	0.2352	0.0605	0.0138	0.0743		1,072.935 2	1,072.935 2	0.0780		1,074.886 0
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0656	0.0463	0.5089	1.2700e- 003	0.1232	1.0900e- 003	0.1243	0.0327	1.0000e- 003	0.0337		126.7988	126.7988	4.4400e- 003		126.9099
Total	0.1872	3.9647	1.3890	0.0112	0.3440	0.0156	0.3595	0.0932	0.0148	0.1080		1,199.734 0	1,199.734 0	0.0825		1,201.795 9

3.3 Grading - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Fugitive Dust					6.6139	0.0000	6.6139	3.3768	0.0000	3.3768			0.0000			0.0000
Off-Road	2.5805	28.3480	16.2934	0.0297		1.3974	1.3974		1.2856	1.2856		2,936.806 8	2,936.806 8	0.9292		2,960.036 1
Total	2.5805	28.3480	16.2934	0.0297	6.6139	1.3974	8.0113	3.3768	1.2856	4.6624		2,936.806 8	2,936.806 8	0.9292		2,960.036 1

3.3 Grading - 2019

Unmitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.6560	21.1362	4.7476	0.0535	1.1907	0.0780	1.2686	0.3264	0.0746	0.4010		5,787.476 3	5,787.476 3	0.4209		5,797.998 9
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0656	0.0463	0.5089	1.2700e- 003	0.1232	1.0900e- 003	0.1243	0.0327	1.0000e- 003	0.0337		126.7988	126.7988	4.4400e- 003		126.9099
Total	0.7215	21.1824	5.2565	0.0548	1.3139	0.0791	1.3929	0.3591	0.0756	0.4347		5,914.275 1	5,914.275 1	0.4254		5,924.908 9

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust					6.6139	0.0000	6.6139	3.3768	0.0000	3.3768			0.0000			0.0000
Off-Road	2.5805	28.3480	16.2934	0.0297		1.3974	1.3974		1.2856	1.2856	0.0000	2,936.806 8	2,936.806 8	0.9292		2,960.036 1
Total	2.5805	28.3480	16.2934	0.0297	6.6139	1.3974	8.0113	3.3768	1.2856	4.6624	0.0000	2,936.806 8	2,936.806 8	0.9292		2,960.036 1

3.3 Grading - 2019

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day		<u>.</u>					lb/c	lay		
Hauling	0.6560	21.1362	4.7476	0.0535	1.1907	0.0780	1.2686	0.3264	0.0746	0.4010		5,787.476 3	5,787.476 3	0.4209		5,797.998 9
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0656	0.0463	0.5089	1.2700e- 003	0.1232	1.0900e- 003	0.1243	0.0327	1.0000e- 003	0.0337		126.7988	126.7988	4.4400e- 003		126.9099
Total	0.7215	21.1824	5.2565	0.0548	1.3139	0.0791	1.3929	0.3591	0.0756	0.4347		5,914.275 1	5,914.275 1	0.4254		5,924.908 9

3.4 Building Construction - 2019

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	lay							lb/c	day		
Off-Road	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127		2,591.580 2	2,591.580 2	0.6313		2,607.363 5
Total	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127		2,591.580 2	2,591.580 2	0.6313		2,607.363 5

3.4 Building Construction - 2019

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1883	5.0033	1.4583	0.0112	0.2844	0.0332	0.3176	0.0819	0.0318	0.1136		1,192.365 2	1,192.365 2	0.0820		1,194.415 4
Worker	0.4414	0.3114	3.4263	8.5800e- 003	0.8297	7.3300e- 003	0.8370	0.2201	6.7600e- 003	0.2268		853.7787	853.7787	0.0299		854.5268
Total	0.6297	5.3148	4.8846	0.0198	1.1141	0.0405	1.1546	0.3020	0.0385	0.3405		2,046.143 9	2,046.143 9	0.1119		2,048.942 2

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899	- 	1.2127	1.2127	0.0000	2,591.580 2	2,591.580 2	0.6313		2,607.363 5
Total	2.3612	21.0788	17.1638	0.0269		1.2899	1.2899		1.2127	1.2127	0.0000	2,591.580 2	2,591.580 2	0.6313		2,607.363 5

3.4 Building Construction - 2019

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1883	5.0033	1.4583	0.0112	0.2844	0.0332	0.3176	0.0819	0.0318	0.1136		1,192.365 2	1,192.365 2	0.0820		1,194.415 4
Worker	0.4414	0.3114	3.4263	8.5800e- 003	0.8297	7.3300e- 003	0.8370	0.2201	6.7600e- 003	0.2268		853.7787	853.7787	0.0299		854.5268
Total	0.6297	5.3148	4.8846	0.0198	1.1141	0.0405	1.1546	0.3020	0.0385	0.3405		2,046.143 9	2,046.143 9	0.1119		2,048.942 2

3.4 Building Construction - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Off-Road	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503		2,553.063 1	2,553.063 1	0.6229		2,568.634 5
Total	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503		2,553.063 1	2,553.063 1	0.6229		2,568.634 5

3.4 Building Construction - 2020

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1614	4.5841	1.3238	0.0111	0.2844	0.0225	0.3069	0.0819	0.0215	0.1034		1,184.233 8	1,184.233 8	0.0776		1,186.173 5
Worker	0.4069	0.2775	3.1031	8.3100e- 003	0.8297	7.1100e- 003	0.8368	0.2201	6.5500e- 003	0.2266		827.8458	827.8458	0.0266		828.5101
Total	0.5683	4.8615	4.4269	0.0194	1.1141	0.0296	1.1437	0.3020	0.0281	0.3300		2,012.079 6	2,012.079 6	0.1042		2,014.683 6

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	day		
Off-Road	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503	0.0000	2,553.063 1	2,553.063 1	0.6229		2,568.634 5
Total	2.1198	19.1860	16.8485	0.0269		1.1171	1.1171		1.0503	1.0503	0.0000	2,553.063 1	2,553.063 1	0.6229		2,568.634 5

3.4 Building Construction - 2020

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.1614	4.5841	1.3238	0.0111	0.2844	0.0225	0.3069	0.0819	0.0215	0.1034		1,184.233 8	1,184.233 8	0.0776		1,186.173 5
Worker	0.4069	0.2775	3.1031	8.3100e- 003	0.8297	7.1100e- 003	0.8368	0.2201	6.5500e- 003	0.2266		827.8458	827.8458	0.0266		828.5101
Total	0.5683	4.8615	4.4269	0.0194	1.1141	0.0296	1.1437	0.3020	0.0281	0.3300		2,012.079 6	2,012.079 6	0.1042		2,014.683 6

3.5 Paving - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Off-Road	1.3566	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926		2,207.733 4	2,207.733 4	0.7140		2,225.584 1
Paving	0.0000					0.0000	0.0000		0.0000	0.0000		,	0.0000			0.0000
Total	1.3566	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926		2,207.733 4	2,207.733 4	0.7140		2,225.584 1

3.5 Paving - 2020

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0604	0.0412	0.4609	1.2300e- 003	0.1232	1.0600e- 003	0.1243	0.0327	9.7000e- 004	0.0337		122.9474	122.9474	3.9500e- 003		123.0461
Total	0.0604	0.0412	0.4609	1.2300e- 003	0.1232	1.0600e- 003	0.1243	0.0327	9.7000e- 004	0.0337		122.9474	122.9474	3.9500e- 003		123.0461

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Off-Road	1.3566	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926	0.0000	2,207.733 4	2,207.733 4	0.7140		2,225.584 1
Paving	0.0000					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Total	1.3566	14.0656	14.6521	0.0228		0.7528	0.7528		0.6926	0.6926	0.0000	2,207.733 4	2,207.733 4	0.7140		2,225.584 1

3.5 Paving - 2020

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0604	0.0412	0.4609	1.2300e- 003	0.1232	1.0600e- 003	0.1243	0.0327	9.7000e- 004	0.0337		122.9474	122.9474	3.9500e- 003		123.0461
Total	0.0604	0.0412	0.4609	1.2300e- 003	0.1232	1.0600e- 003	0.1243	0.0327	9.7000e- 004	0.0337		122.9474	122.9474	3.9500e- 003		123.0461

3.6 Architectural Coating - 2020

Unmitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Archit. Coating	35.2495					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2422	1.6838	1.8314	2.9700e- 003		0.1109	0.1109		0.1109	0.1109		281.4481	281.4481	0.0218		281.9928
Total	35.4916	1.6838	1.8314	2.9700e- 003		0.1109	0.1109		0.1109	0.1109		281.4481	281.4481	0.0218		281.9928

3.6 Architectural Coating - 2020

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0806	0.0549	0.6145	1.6500e- 003	0.1643	1.4100e- 003	0.1657	0.0436	1.3000e- 003	0.0449		163.9299	163.9299	5.2600e- 003		164.0614
Total	0.0806	0.0549	0.6145	1.6500e- 003	0.1643	1.4100e- 003	0.1657	0.0436	1.3000e- 003	0.0449		163.9299	163.9299	5.2600e- 003		164.0614

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Archit. Coating	35.2495					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Off-Road	0.2422	1.6838	1.8314	2.9700e- 003		0.1109	0.1109		0.1109	0.1109	0.0000	281.4481	281.4481	0.0218		281.9928
Total	35.4916	1.6838	1.8314	2.9700e- 003		0.1109	0.1109		0.1109	0.1109	0.0000	281.4481	281.4481	0.0218		281.9928

3.6 Architectural Coating - 2020

Mitigated Construction Off-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0806	0.0549	0.6145	1.6500e- 003	0.1643	1.4100e- 003	0.1657	0.0436	1.3000e- 003	0.0449		163.9299	163.9299	5.2600e- 003		164.0614
Total	0.0806	0.0549	0.6145	1.6500e- 003	0.1643	1.4100e- 003	0.1657	0.0436	1.3000e- 003	0.0449		163.9299	163.9299	5.2600e- 003		164.0614

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Mitigated	5.9881	29.5815	79.0831	0.2719	22.5716	0.2370	22.8086	6.0408	0.2213	6.2621		27,665.16 29	27,665.16 29	1.5097		27,702.90 50
Unmitigated	5.9881	29.5815	79.0831	0.2719	22.5716	0.2370	22.8086	6.0408	0.2213	6.2621		27,665.16 29	27,665.16 29	1.5097		27,702.90 50

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	0.00	0.00	0.00		
High School	0.00	0.00	0.00		
Library	0.00	0.00	0.00		
Recreational Swimming Pool	3,236.01	3,236.01	3236.01	10,614,832	10,614,832
Total	3,236.01	3,236.01	3,236.01	10,614,832	10,614,832

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4
High School	9.50	7.30	7.30	77.80	17.20	5.00	75	19	6
Library	9.50	7.30	7.30	52.00	43.00	5.00	44	44	12
Recreational Swimming Pool	9.50	7.30	7.30	77.80	17.20	5.00	100	0	0

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
High School	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
Library	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
Recreational Swimming Pool	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	lay							lb/c	lay		
NaturalGas Mitigated	0.1025	0.9318	0.7827	5.5900e- 003		0.0708	0.0708		0.0708	0.0708		1,118.107 9	1,118.107 9	0.0214	0.0205	1,124.752 2
NaturalGas Unmitigated	0.1025	0.9318	0.7827	5.5900e- 003		0.0708	0.0708		0.0708	0.0708		1,118.107 9	1,118.107 9	0.0214	0.0205	1,124.752 2

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
General Office Building	3225.36	0.0348	0.3162	0.2656	1.9000e- 003		0.0240	0.0240	, , ,	0.0240	0.0240		379.4544	379.4544	7.2700e- 003	6.9600e- 003	381.7093
High School	3924.44	0.0423	0.3848	0.3232	2.3100e- 003		0.0292	0.0292		0.0292	0.0292		461.6985	461.6985	8.8500e- 003	8.4600e- 003	464.4422
Library	2354.12	0.0254	0.2308	0.1939	1.3800e- 003		0.0175	0.0175		0.0175	0.0175		276.9550	276.9550	5.3100e- 003	5.0800e- 003	278.6008
Recreational Swimming Pool	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.1025	0.9318	0.7827	5.5900e- 003		0.0708	0.0708		0.0708	0.0708		1,118.107 9	1,118.107 9	0.0214	0.0205	1,124.752 2

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/d	day		<u>.</u>					lb/c	lay		
General Office Building	3.22536	0.0348	0.3162	0.2656	1.9000e- 003		0.0240	0.0240	1 1 1	0.0240	0.0240		379.4544	379.4544	7.2700e- 003	6.9600e- 003	381.7093
High School	3.92444	0.0423	0.3848	0.3232	2.3100e- 003		0.0292	0.0292		0.0292	0.0292		461.6985	461.6985	8.8500e- 003	8.4600e- 003	464.4422
Library	2.35412	0.0254	0.2308	0.1939	1.3800e- 003		0.0175	0.0175		0.0175	0.0175		276.9550	276.9550	5.3100e- 003	5.0800e- 003	278.6008
Recreational Swimming Pool	0	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.1025	0.9318	0.7827	5.5900e- 003		0.0708	0.0708		0.0708	0.0708		1,118.107 9	1,118.107 9	0.0214	0.0205	1,124.752 2

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Residential Interior

Use Low VOC Paint - Residential Exterior

Use Low VOC Paint - Non-Residential Interior

Use Low VOC Paint - Non-Residential Exterior

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Mitigated	6.3931	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599
Unmitigated	7.0370	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005	 - - -	9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/e	day							lb/d	day		
Architectural Coating	1.6096					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	5.4249			· · · · · · · · · · · · · · · · · ·		0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.4600e- 003	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004	, , ,	0.0599
Total	7.0370	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599

6.2 Area by SubCategory

Mitigated

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day					lb/day					
	0.9657					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	5.4249					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	2.4600e- 003	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599
Total	6.3931	2.4000e- 004	0.0263	0.0000		9.0000e- 005	9.0000e- 005		9.0000e- 005	9.0000e- 005		0.0561	0.0561	1.5000e- 004		0.0599

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Toilet

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

1							
	Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
<u>Boilers</u>						
Equipment Type	Number	Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type	
User Defined Equipment						
Equipment Type	Number					
11.0 Vegetation						

Greenhouse Gas Emission Worksheet

N₂O Mobile Emissions

2016 FMP

From CalEEMod v.2016.3.2 Vehicle Fleet Mix Output:

Annual VMT:

10,614,832

		CH ₄ Emission Factor	CH ₄ Emissions	N ₂ O Emission Factor	N ₂ O Emissions
Vehicle Type	Percent Type	(g/mile)*	(g/mile)**	(g/mile)*	(g/mile)**
Light Auto	54.7%	0.04	0.02188768	0.04	0.02188768
Light Truck < 3750 lbs	4.5%	0.05	0.00225885	0.06	0.00271062
Light Truck 3751-5750 lbs	20.3%	0.05	0.01013715	0.06	0.01216458
Med Truck 5751-8500 lbs	12.2%	0.12	0.0145812	0.2	0.024302
Lite-Heavy Truck 8501-10,000 lbs	1.6%	0.12	0.00193764	0.2	0.0032294
Lite-Heavy Truck 10,001-14,000 lbs	0.6%	0.09	0.00055287	0.125	0.000767875
Med-Heavy Truck 14,001-33,000 lbs	2.0%	0.06	0.00118458	0.05	0.00098715
Heavy-Heavy Truck 33,001-60,000 lbs	3.0%	0.06	0.0017967	0.05	0.00149725
Other Bus	0.2%	0.06	0.00014874	0.05	0.00012395
Urban Bus	0.2%	0.06	0.0001362	0.05	0.0001135
Motorcycle	0.5%	0.09	0.00045702	0.01	0.00005078
School Bus	0.1%	0.06	0.00004092	0.05	0.0000341
Motor Home	0.1%	0.09	0.00008019	0.125	0.000111375
Total	100.0%		0.05519974		0.06798026

Total Emissions (metric tons) =

Emission Factor by Vehicle Mix (g/mi) x Annual VMT(mi) x 0.000001 metric tons/g

Conversion to Carbon Dioxide Equivalency (CO₂e) Units based on Global Warming Potential (GWP)

CH ₄	21 GWP
N ₂ O	310 GWP
1 ton (short, US) =	0.90718474 metric ton

Annual Mobile Emissions:

Total Emissions	Tota	al CO2e units	
N ₂ O Emissions: 0.7216	metric tons N ₂ O	223.70 metric tons CO ₂ e	
	Project Total:	223.70 metric tons CO_2e	

References

* from Table C.4: Methane and Nitrous Oxide Emission Factors for Mobile Sources by Vehicle and Fuel Type (g/mile).

in California Climate Action Registry General Reporting Protocol, Reporting Entity-Wide Greenhouse Gas Emissions, Version 3.1, January 2009. Assume Model year 2000-present, gasoline fueled.

** Source: California Climate Action Registry General Reporting Protocol, Reporting Entity-Wide Greenhouse Gas Emissions, Version 3.1, January 2009.

*** CalEEMod v.2016.3.2 results for mobile sources.

AVCCD 2016 FMP - 2018 Existing Conditions

Los Angeles-Mojave Desert County, Annual

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	13.97	1000sqft	0.32	13,973.00	0
High School	81.57	1000sqft	1.87	81,567.00	0
Library	15.41	1000sqft	0.35	15,412.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	7			Operational Year	2021
Utility Company	Southern California Edisor	n			
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Note 9

Construction Phase - Note 10

Off-road Equipment -

Demolition -

Grading - Note 3

Architectural Coating -

Vehicle Trips - Note 11

Road Dust - Note 6

Area Coating - Note 7

Solid Waste - Note 8

Construction Off-road Equipment Mitigation -

Mobile Land Use Mitigation -

Mobile Commute Mitigation -

Area Mitigation -

Energy Mitigation -

Water Mitigation -

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblVehicleTrips	ST_TR	2.46	0.00
tblVehicleTrips	ST_TR	4.37	0.00
tblVehicleTrips	ST_TR	46.55	0.00
tblVehicleTrips	SU_TR	1.05	0.00
tblVehicleTrips	SU_TR	1.79	0.00
tblVehicleTrips	SU_TR	25.49	0.00
tblVehicleTrips	WD_TR	11.03	0.00
tblVehicleTrips	WD_TR	12.89	0.00
tblVehicleTrips	WD_TR	56.24	0.00

2.0 Emissions Summary

2.1 Overall Construction

Unmitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							МТ	/yr		
	0.0235	0.2272	0.1535	2.5000e- 004	1.0500e- 003	0.0129	0.0139	2.8000e- 004	0.0120	0.0123	0.0000	22.4295	22.4295	5.4900e- 003	0.0000	22.5667
Maximum	0.0235	0.2272	0.1535	2.5000e- 004	1.0500e- 003	0.0129	0.0139	2.8000e- 004	0.0120	0.0123	0.0000	22.4295	22.4295	5.4900e- 003	0.0000	22.5667

Mitigated Construction

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					ton	s/yr							МТ	7/yr		
2019	0.0235	0.2272	0.1535	2.5000e- 004	1.0500e- 003	0.0129	0.0139	2.8000e- 004	0.0120	0.0123	0.0000	22.4295	22.4295	5.4900e- 003	0.0000	22.5667
Maximum	0.0235	0.2272	0.1535	2.5000e- 004	1.0500e- 003	0.0129	0.0139	2.8000e- 004	0.0120	0.0123	0.0000	22.4295	22.4295	5.4900e- 003	0.0000	22.5667

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Quarter	Start Date	End Date	Maximum Unmitigated ROG + NOX (tons/quarter)	Maximum Mitigated ROG + NOX (tons/quarter)
1	1-1-2019	3-31-2019	0.2507	0.2507
		Highest	0.2507	0.2507

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Area	0.5620	1.0000e- 005	1.0200e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.9800e- 003	1.9800e- 003	1.0000e- 005	0.0000	2.1100e- 003
Energy	7.4000e- 003	0.0673	0.0565	4.0000e- 004		5.1100e- 003	5.1100e- 003		5.1100e- 003	5.1100e- 003	0.0000	319.9446	319.9446	0.0116	3.4500e- 003	321.2624
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Waste	Franz					0.0000	0.0000		0.0000	0.0000	27.0425	0.0000	27.0425	1.5982	0.0000	66.9965
Water	F 1 1 1 1 1 1 1 1 1 1 1 1 1					0.0000	0.0000		0.0000	0.0000	1.8000	56.2494	58.0494	0.1872	4.8500e- 003	64.1733
Total	0.5694	0.0673	0.0575	4.0000e- 004	0.0000	5.1100e- 003	5.1100e- 003	0.0000	5.1100e- 003	5.1100e- 003	28.8424	376.1960	405.0384	1.7970	8.3000e- 003	452.4343

2.2 Overall Operational

Mitigated Operational

	ROG	NOx	CO	SO2	Fugit PM		xhaust PM10	PM10 Total	Fugiti PM2		aust 12.5	PM2.5 Total	Bio	- CO2	NBio- CO2	Total CO	2 CH	4	N2O	CO2e
Category						tons/yr	r									1	/IT/yr			
Area	0.5620	1.0000e- 005	1.0200e 003	e- 0.0000		(0.0000	0.0000		0.0	000	0.0000	0.	0000	1.9800e- 003	1.9800e 003	1.000 00		0.0000	2.1100e- 003
Energy	7.4000e- 003	0.0673	0.0565	4.0000e 004		5.	.1100e- 003	5.1100e- 003			00e- 03	5.1100e- 003	0.	0000	319.9446	319.944	6 0.01	16	3.4500e- 003	321.2624
Mobile	0.0000	0.0000	0.0000	0.0000	0.00	000 0	0.0000	0.0000	0.000	0.0	000	0.0000	0.	0000	0.0000	0.0000	0.00	00	0.0000	0.0000
Waste	F,			·		(0.0000	0.0000		0.0	000	0.0000	27	.0425	0.0000	27.0425	1.59	82	0.0000	66.9965
Water	F,			·		(0.0000	0.0000		0.0	000	0.0000	1.	6812	52.7005	54.3817	0.17	49	4.5300e- 003	60.1020
Total	0.5694	0.0673	0.0575	6 4.0000 004	÷- 0.00	000 5.	.1100e- 003	5.1100e- 003	0.000		00e- 03	5.1100e- 003	28	.7236	372.6471	401.370	1.78	46	7.9800e- 003	448.3630
	ROG	1	NOx	CO	SO2	Fugitive PM10			110 otal	Fugitive PM2.5	Exha PM2		12.5 otal	Bio- (CO2 NBio	-CO2 Tot	al CO2	CH4	N2	0 CO2
Percent Reduction	0.00	(0.00	0.00	0.00	0.00	0.	00 0.	.00	0.00	0.0	0 0	.00	0.4	1 0.	94 (.91	0.69	3.8	36 0.9

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	Demolition	Demolition	1/1/2019	1/28/2019	5	20	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Demolition	Rubber Tired Dozers	1	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	5	13.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

3.1 Mitigation Measures Construction

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2019

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0230	0.2268	0.1489	2.4000e- 004		0.0129	0.0129		0.0120	0.0120	0.0000	21.4161	21.4161	5.4500e- 003	0.0000	21.5524
Total	0.0230	0.2268	0.1489	2.4000e- 004	0.0000	0.0129	0.0129	0.0000	0.0120	0.0120	0.0000	21.4161	21.4161	5.4500e- 003	0.0000	21.5524

Unmitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	5.2000e- 004	4.1000e- 004	4.5100e- 003	1.0000e- 005	1.0500e- 003	1.0000e- 005	1.0600e- 003	2.8000e- 004	1.0000e- 005	2.9000e- 004	0.0000	1.0134	1.0134	4.0000e- 005	0.0000	1.0143
Total	5.2000e- 004	4.1000e- 004	4.5100e- 003	1.0000e- 005	1.0500e- 003	1.0000e- 005	1.0600e- 003	2.8000e- 004	1.0000e- 005	2.9000e- 004	0.0000	1.0134	1.0134	4.0000e- 005	0.0000	1.0143

3.2 Demolition - 2019

Mitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Off-Road	0.0230	0.2268	0.1489	2.4000e- 004		0.0129	0.0129		0.0120	0.0120	0.0000	21.4161	21.4161	5.4500e- 003	0.0000	21.5524
Total	0.0230	0.2268	0.1489	2.4000e- 004	0.0000	0.0129	0.0129	0.0000	0.0120	0.0120	0.0000	21.4161	21.4161	5.4500e- 003	0.0000	21.5524

Mitigated Construction Off-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Worker	5.2000e- 004	4.1000e- 004	4.5100e- 003	1.0000e- 005	1.0500e- 003	1.0000e- 005	1.0600e- 003	2.8000e- 004	1.0000e- 005	2.9000e- 004	0.0000	1.0134	1.0134	4.0000e- 005	0.0000	1.0143
Total	5.2000e- 004	4.1000e- 004	4.5100e- 003	1.0000e- 005	1.0500e- 003	1.0000e- 005	1.0600e- 003	2.8000e- 004	1.0000e- 005	2.9000e- 004	0.0000	1.0134	1.0134	4.0000e- 005	0.0000	1.0143

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							MT	/yr		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	0.00	0.00	0.00		
High School	0.00	0.00	0.00		
Library	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4
High School	9.50	7.30	7.30	77.80	17.20	5.00	75	19	6
Library	9.50	7.30	7.30	52.00	43.00	5.00	44	44	12

Page 11 of 20

AVCCD 2016 FMP - 2018 Existing Conditions - Los Angeles-Mojave Desert County, Annual

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
High School	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
Library	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					ton	s/yr							МТ	/yr		
Electricity Mitigated						0.0000	0.0000		0.0000	0.0000	0.0000	246.7356	246.7356	0.0102	2.1100e- 003	247.6183
Electricity Unmitigated			1			0.0000	0.0000		0.0000	0.0000	0.0000	246.7356	246.7356	0.0102	2.1100e- 003	247.6183
NaturalGas Mitigated	7.4000e- 003	0.0673	0.0565	4.0000e- 004		5.1100e- 003	5.1100e- 003		5.1100e- 003	5.1100e- 003	0.0000	73.2090	73.2090	1.4000e- 003	1.3400e- 003	73.6440
NaturalGas Unmitigated	7.4000e- 003	0.0673	0.0565	4.0000e- 004		5.1100e- 003	5.1100e- 003		5.1100e- 003	5.1100e- 003	0.0000	73.2090	73.2090	1.4000e- 003	1.3400e- 003	73.6440

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							MT	'/yr		
General Office Building	240196	1.3000e- 003	0.0118	9.8900e- 003	7.0000e- 005		8.9000e- 004	8.9000e- 004		8.9000e- 004	8.9000e- 004	0.0000	12.8178	12.8178	2.5000e- 004	2.3000e- 004	12.8939
High School	872767	4.7100e- 003	0.0428	0.0359	2.6000e- 004		3.2500e- 003	3.2500e- 003		3.2500e- 003	3.2500e- 003	0.0000	46.5742	46.5742	8.9000e- 004	8.5000e- 004	46.8509
Library	258922	1.4000e- 003	0.0127	0.0107	8.0000e- 005		9.6000e- 004	9.6000e- 004		9.6000e- 004	9.6000e- 004	0.0000	13.8170	13.8170	2.6000e- 004	2.5000e- 004	13.8992
Total		7.4100e- 003	0.0672	0.0565	4.1000e- 004		5.1000e- 003	5.1000e- 003		5.1000e- 003	5.1000e- 003	0.0000	73.2090	73.2090	1.4000e- 003	1.3300e- 003	73.6440

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					ton	s/yr							МТ	/yr		
General Office Building	240196	1.3000e- 003	0.0118	9.8900e- 003	7.0000e- 005		8.9000e- 004	8.9000e- 004		8.9000e- 004	8.9000e- 004	0.0000	12.8178	12.8178	2.5000e- 004	2.3000e- 004	12.8939
High School	872767	4.7100e- 003	0.0428	0.0359	2.6000e- 004		3.2500e- 003	3.2500e- 003		3.2500e- 003	3.2500e- 003	0.0000	46.5742	46.5742	8.9000e- 004	8.5000e- 004	46.8509
Library	258922	1.4000e- 003	0.0127	0.0107	8.0000e- 005		9.6000e- 004	9.6000e- 004		9.6000e- 004	9.6000e- 004	0.0000	13.8170	13.8170	2.6000e- 004	2.5000e- 004	13.8992
Total		7.4100e- 003	0.0672	0.0565	4.1000e- 004		5.1000e- 003	5.1000e- 003		5.1000e- 003	5.1000e- 003	0.0000	73.2090	73.2090	1.4000e- 003	1.3300e- 003	73.6440

Page 13 of 20

AVCCD 2016 FMP - 2018 Existing Conditions - Los Angeles-Mojave Desert County, Annual

5.3 Energy by Land Use - Electricity

<u>Unmitigated</u>

	Electricity Use	Total CO2	CH4	N2O	CO2e
Land Use	kWh/yr		ΜT	7/yr	
General Office Building	139311	44.3874	1.8300e- 003	3.8000e- 004	44.5462
High School	598702	190.7592	7.8800e- 003	1.6300e- 003	191.4417
Library	36372.3	11.5890	4.8000e- 004	1.0000e- 004	11.6305
Total		246.7356	0.0102	2.1100e- 003	247.6183

Mitigated

	Electricity Use	Total CO2	CH4	N2O	CO2e		
Land Use	kWh/yr	MT/yr					
General Office Building	139311	44.3874	1.8300e- 003	3.8000e- 004	44.5462		
High School	598702	190.7592	7.8800e- 003	1.6300e- 003	191.4417		
Library	36372.3	11.5890	4.8000e- 004	1.0000e- 004	11.6305		
Total		246.7356	0.0102	2.1100e- 003	247.6183		

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Residential Interior Use Low VOC Paint - Residential Exterior Use Low VOC Paint - Non-Residential Interior Use Low VOC Paint - Non-Residential Exterior

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category	gory tons/yr								MT/yr							
Mitigated	0.5620	1.0000e- 005	1.0200e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.9800e- 003	1.9800e- 003	1.0000e- 005	0.0000	2.1100e- 003
Unmitigated	0.5620	1.0000e- 005	1.0200e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.9800e- 003	1.9800e- 003	1.0000e- 005	0.0000	2.1100e- 003

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	SubCategory tons/yr										МТ	/yr				
Architectural Coating	0.1286					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.4333					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	1.0000e- 004	1.0000e- 005	1.0200e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.9800e- 003	1.9800e- 003	1.0000e- 005	0.0000	2.1100e- 003
Total	0.5620	1.0000e- 005	1.0200e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.9800e- 003	1.9800e- 003	1.0000e- 005	0.0000	2.1100e- 003

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	SubCategory tons/yr								МТ	/yr						
Architectural Coating	0.1286					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.4333					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	1.0000e- 004	1.0000e- 005	1.0200e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.9800e- 003	1.9800e- 003	1.0000e- 005	0.0000	2.1100e- 003
Total	0.5620	1.0000e- 005	1.0200e- 003	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	1.9800e- 003	1.9800e- 003	1.0000e- 005	0.0000	2.1100e- 003

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Toilet

Use Water Efficient Irrigation System

	Total CO2	CH4	N2O	CO2e		
Category	MT/yr					
Intigatod		0.1749	4.5300e- 003	60.1020		
Unmitigated		0.1872	4.8500e- 003	64.1733		

Page 17 of 20

AVCCD 2016 FMP - 2018 Existing Conditions - Los Angeles-Mojave Desert County, Annual

7.2 Water by Land Use

<u>Unmitigated</u>

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		ΜT	ī/yr	
General Office Building	2.48294 / 1.5218	16.4759	0.0816	2.0400e- 003	19.1240
High School	2.7085 / 6.96472	36.7505	0.0897	2.3900e- 003	39.7064
Library	0.482162/ 0.754151		0.0159	4.1000e- 004	5.3430
Total		58.0494	0.1872	4.8400e- 003	64.1733

Mitigated

	Indoor/Out door Use	Total CO2	CH4	N2O	CO2e
Land Use	Mgal		MT	ī/yr	
General Office Building	2.31907 / 1.42897	15.4154	0.0762	1.9100e- 003	17.8888
High School	2.52974 / 6.53987	34.4483	0.0838	2.2300e- 003	37.2095
Library	0.450339/ 0.708148		0.0149	3.8000e- 004	5.0038
Total		54.3817	0.1748	4.5200e- 003	60.1020

Page 18 of 20

AVCCD 2016 FMP - 2018 Existing Conditions - Los Angeles-Mojave Desert County, Annual

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH4	N2O	CO2e		
		МТ	ī/yr			
inigatou	27.0425	1.5982	0.0000	66.9965		
Chiningatou	27.0425	1.5982	0.0000	66.9965		

8.2 Waste by Land Use

Unmitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	7/yr	
General Office Building	12.99	2.6369	0.1558	0.0000	6.5327
High School	106.04	21.5252	1.2721	0.0000	53.3277
Library	14.19	2.8804	0.1702	0.0000	7.1362
Total		27.0425	1.5982	0.0000	66.9965

Page 19 of 20

AVCCD 2016 FMP - 2018 Existing Conditions - Los Angeles-Mojave Desert County, Annual

8.2 Waste by Land Use

Mitigated

	Waste Disposed	Total CO2	CH4	N2O	CO2e
Land Use	tons		МТ	/yr	
General Office Building	12.99	2.6369	0.1558	0.0000	6.5327
High School	106.04	21.5252	1.2721	0.0000	53.3277
Library	14.19	2.8804	0.1702	0.0000	7.1362
Total		27.0425	1.5982	0.0000	66.9965

9.0 Operational Offroad

Equipment Type	Number	Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type	Number	Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
----------------	--------	-----------	------------	-------------	-------------	-----------

Boilers

Equipment Type Number Heat Input/Day	Heat Input/Year	Boiler Rating	Fuel Type
--------------------------------------	-----------------	---------------	-----------

User Defined Equipment

Equipment Type Number

11.0 Vegetation

AVCCD 2016 FMP - 2018 Existing Conditions

Los Angeles-Mojave Desert County, Summer

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	13.97	1000sqft	0.32	13,973.00	0
High School	81.57	1000sqft	1.87	81,567.00	0
Library	15.41	1000sqft	0.35	15,412.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	7			Operational Year	2021
Utility Company	Southern California Edisor	n			
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Note 9

Construction Phase - Note 10

Off-road Equipment -

Demolition -

Grading - Note 3

Architectural Coating -

Vehicle Trips - Note 11

Road Dust - Note 6

Area Coating - Note 7

Solid Waste - Note 8

Construction Off-road Equipment Mitigation -

Mobile Land Use Mitigation -

Mobile Commute Mitigation -

Area Mitigation -

Energy Mitigation -

Water Mitigation -

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblVehicleTrips	ST_TR	2.46	0.00
tblVehicleTrips	ST_TR	4.37	0.00
tblVehicleTrips	ST_TR	46.55	0.00
tblVehicleTrips	SU_TR	1.05	0.00
tblVehicleTrips	SU_TR	1.79	0.00
tblVehicleTrips	SU_TR	25.49	0.00
tblVehicleTrips	WD_TR	11.03	0.00
tblVehicleTrips	WD_TR	12.89	0.00
tblVehicleTrips	WD_TR	56.24	0.00

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/c	lay		
2019	2.3470	22.7113	15.3703	0.0253	0.1068	1.2872	1.3940	0.0283	1.2026	1.2309	0.0000	2,477.392 8	2,477.392 8	0.6052	0.0000	2,492.522 2
Maximum	2.3470	22.7113	15.3703	0.0253	0.1068	1.2872	1.3940	0.0283	1.2026	1.2309	0.0000	2,477.392 8	2,477.392 8	0.6052	0.0000	2,492.522 2

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day										lb/day					
2019	2.3470	22.7113	15.3703	0.0253	0.1068	1.2872	1.3940	0.0283	1.2026	1.2309	0.0000	2,477.392 8	2,477.392 8	0.6052	0.0000	2,492.522 2
Maximum	2.3470	22.7113	15.3703	0.0253	0.1068	1.2872	1.3940	0.0283	1.2026	1.2309	0.0000	2,477.392 8	2,477.392 8	0.6052	0.0000	2,492.522 2

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/d	lay		
Area	3.0799	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259
Energy	0.0405	0.3685	0.3095	2.2100e- 003		0.0280	0.0280		0.0280	0.0280		442.1867	442.1867	8.4800e- 003	8.1100e- 003	444.8144
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	3.1204	0.3686	0.3209	2.2100e- 003	0.0000	0.0281	0.0281	0.0000	0.0281	0.0281		442.2110	442.2110	8.5400e- 003	8.1100e- 003	444.8403

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Area	3.0799	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259
Energy	0.0405	0.3685	0.3095	2.2100e- 003		0.0280	0.0280		0.0280	0.0280		442.1867	442.1867	8.4800e- 003	8.1100e- 003	444.8144
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Total	3.1204	0.3686	0.3209	2.2100e- 003	0.0000	0.0281	0.0281	0.0000	0.0281	0.0281		442.2110	442.2110	8.5400e- 003	8.1100e- 003	444.8403

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Pha Nun	ase nber	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	D	emolition	Demolition	1/1/2019	1/28/2019	5	20	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Demolition	Rubber Tired Dozers	1	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment	Worker Trip	Vendor Trip	Hauling Trip	Worker Trip	Vendor Trip	Hauling Trip	Worker Vehicle	Vendor	Hauling
	Count	Number	Number	Number	Length	Length	Length	Class	Vehicle Class	Vehicle Class
Demolition	5	13.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

CalEEMod Version: CalEEMod.2016.3.2

AVCCD 2016 FMP - 2018 Existing Conditions - Los Angeles-Mojave Desert County, Summer

3.1 Mitigation Measures Construction

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2019

Unmitigated Construction On-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
Off-Road	2.2950	22.6751	14.8943	0.0241		1.2863	1.2863		1.2017	1.2017		2,360.719 8	2,360.719 8	0.6011		2,375.747 5
Total	2.2950	22.6751	14.8943	0.0241	0.0000	1.2863	1.2863	0.0000	1.2017	1.2017		2,360.719 8	2,360.719 8	0.6011		2,375.747 5

3.2 Demolition - 2019

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0519	0.0362	0.4760	1.1700e- 003	0.1068	9.4000e- 004	0.1077	0.0283	8.7000e- 004	0.0292		116.6730	116.6730	4.0700e- 003		116.7747
Total	0.0519	0.0362	0.4760	1.1700e- 003	0.1068	9.4000e- 004	0.1077	0.0283	8.7000e- 004	0.0292		116.6730	116.6730	4.0700e- 003		116.7747

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/c	lay		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
Off-Road	2.2950	22.6751	14.8943	0.0241		1.2863	1.2863		1.2017	1.2017	0.0000	2,360.719 7	2,360.719 7	0.6011		2,375.747 5
Total	2.2950	22.6751	14.8943	0.0241	0.0000	1.2863	1.2863	0.0000	1.2017	1.2017	0.0000	2,360.719 7	2,360.719 7	0.6011		2,375.747 5

3.2 Demolition - 2019

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0519	0.0362	0.4760	1.1700e- 003	0.1068	9.4000e- 004	0.1077	0.0283	8.7000e- 004	0.0292		116.6730	116.6730	4.0700e- 003		116.7747
Total	0.0519	0.0362	0.4760	1.1700e- 003	0.1068	9.4000e- 004	0.1077	0.0283	8.7000e- 004	0.0292		116.6730	116.6730	4.0700e- 003		116.7747

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000

4.2 Trip Summary Information

	Avei	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	0.00	0.00	0.00		
High School	0.00	0.00	0.00		
Library	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4
High School	9.50	7.30	7.30	77.80	17.20	5.00	75	19	6
Library	9.50	7.30	7.30	52.00	43.00	5.00	44	44	12

4.4 Fleet Mix

CalEEMod Version: CalEEMod.2016.3.2

Page 11 of 15

AVCCD 2016 FMP - 2018 Existing Conditions - Los Angeles-Mojave Desert County, Summer

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
High School	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
Library	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
NaturalGas Mitigated	0.0405	0.3685	0.3095	2.2100e- 003		0.0280	0.0280		0.0280	0.0280		442.1867	442.1867	8.4800e- 003	8.1100e- 003	444.8144
	0.0405	0.3685	0.3095	2.2100e- 003		0.0280	0.0280		0.0280	0.0280		442.1867	442.1867	8.4800e- 003	8.1100e- 003	444.8144

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
General Office Building	658.071	7.1000e- 003	0.0645	0.0542	3.9000e- 004		4.9000e- 003	4.9000e- 003		4.9000e- 003	4.9000e- 003		77.4201	77.4201	1.4800e- 003	1.4200e- 003	77.8802
High School	2391.14	0.0258	0.2344	0.1969	1.4100e- 003		0.0178	0.0178		0.0178	0.0178		281.3109	281.3109	5.3900e- 003	5.1600e- 003	282.9825
Library	709.374	7.6500e- 003	0.0696	0.0584	4.2000e- 004		5.2900e- 003	5.2900e- 003		5.2900e- 003	5.2900e- 003		83.4558	83.4558	1.6000e- 003	1.5300e- 003	83.9517
Total		0.0405	0.3685	0.3095	2.2200e- 003		0.0280	0.0280		0.0280	0.0280		442.1867	442.1867	8.4700e- 003	8.1100e- 003	444.8144

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr			<u>.</u>		lb/	day							lb/c	lay		
General Office Building	0.658071	7.1000e- 003	0.0645	0.0542	3.9000e- 004		4.9000e- 003	4.9000e- 003		4.9000e- 003	4.9000e- 003		77.4201	77.4201	1.4800e- 003	1.4200e- 003	77.8802
High School	2.39114	0.0258	0.2344	0.1969	1.4100e- 003		0.0178	0.0178		0.0178	0.0178		281.3109	281.3109	5.3900e- 003	5.1600e- 003	282.9825
Library	0.709374	7.6500e- 003	0.0696	0.0584	4.2000e- 004		5.2900e- 003	5.2900e- 003		5.2900e- 003	5.2900e- 003		83.4558	83.4558	1.6000e- 003	1.5300e- 003	83.9517
Total		0.0405	0.3685	0.3095	2.2200e- 003		0.0280	0.0280		0.0280	0.0280		442.1867	442.1867	8.4700e- 003	8.1100e- 003	444.8144

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Residential Interior Use Low VOC Paint - Residential Exterior Use Low VOC Paint - Non-Residential Interior Use Low VOC Paint - Non-Residential Exterior

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/d	day							lb/d	lay		
Mitigated	3.0799	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259
Unmitigated	3.0799	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.7045					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	2.3744					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	1.0600e- 003	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259
Total	3.0799	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.7045					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	2.3744					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	1.0600e- 003	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259
Total	3.0799	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Toilet

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type Number Hours/Day Days/Year Ho	orse Power Load Factor Fuel T	Days/Year	Hours/Day	Number	Equipment Type
--	-------------------------------	-----------	-----------	--------	----------------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type Number Hours/Day	Hours/Year	Horse Power	Load Factor	Fuel Type
---------------------------------	------------	-------------	-------------	-----------

Boilers

Equipment Type	Number	Heat Input/Dav	Heat Input/Year	Boiler Rating	Fuel Type
Equipment Type	Number	Tieat input/Day	rieat input/real	Boller Rating	Fuertype

User Defined Equipment

Equipment Type Number

11.0 Vegetation

AVCCD 2016 FMP - 2018 Existing Conditions

Los Angeles-Mojave Desert County, Winter

1.0 Project Characteristics

1.1 Land Usage

Land Uses	Size	Metric	Lot Acreage	Floor Surface Area	Population
General Office Building	13.97	1000sqft	0.32	13,973.00	0
High School	81.57	1000sqft	1.87	81,567.00	0
Library	15.41	1000sqft	0.35	15,412.00	0

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	2.2	Precipitation Freq (Days)	33
Climate Zone	7			Operational Year	2021
Utility Company	Southern California Edisor	n			
CO2 Intensity (Ib/MWhr)	702.44	CH4 Intensity (Ib/MWhr)	0.029	N2O Intensity (Ib/MWhr)	0.006

1.3 User Entered Comments & Non-Default Data

Project Characteristics -

Land Use - Note 9

Construction Phase - Note 10

Off-road Equipment -

Demolition -

Grading - Note 3

Architectural Coating -

Vehicle Trips - Note 11

Road Dust - Note 6

Area Coating - Note 7

Solid Waste - Note 8

Construction Off-road Equipment Mitigation -

Mobile Land Use Mitigation -

Mobile Commute Mitigation -

Area Mitigation -

Energy Mitigation -

Water Mitigation -

Table Name	Column Name	Default Value	New Value
tblConstDustMitigation	WaterUnpavedRoadVehicleSpeed	0	15
tblVehicleTrips	ST_TR	2.46	0.00
tblVehicleTrips	ST_TR	4.37	0.00
tblVehicleTrips	ST_TR	46.55	0.00
tblVehicleTrips	SU_TR	1.05	0.00
tblVehicleTrips	SU_TR	1.79	0.00
tblVehicleTrips	SU_TR	25.49	0.00
tblVehicleTrips	WD_TR	11.03	0.00
tblVehicleTrips	WD_TR	12.89	0.00
tblVehicleTrips	WD_TR	56.24	0.00

2.0 Emissions Summary

2.1 Overall Construction (Maximum Daily Emission)

Unmitigated Construction

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year					lb/e	day							lb/c	lay		
2019	2.3518	22.7151	15.3353	0.0252	0.1068	1.2872	1.3940	0.0283	1.2026	1.2309	0.0000	2,470.612 1	2,470.612 1	0.6050	0.0000	2,485.736 1
Maximum	2.3518	22.7151	15.3353	0.0252	0.1068	1.2872	1.3940	0.0283	1.2026	1.2309	0.0000	2,470.612 1	2,470.612 1	0.6050	0.0000	2,485.736 1

Mitigated Construction

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Year	lb/day												lb/c	lay		
2019	2.3518	22.7151	15.3353	0.0252	0.1068	1.2872	1.3940	0.0283	1.2026	1.2309	0.0000	2,470.612 1	2,470.612 1	0.6050	0.0000	2,485.736 1
Maximum	2.3518	22.7151	15.3353	0.0252	0.1068	1.2872	1.3940	0.0283	1.2026	1.2309	0.0000	2,470.612 1	2,470.612 1	0.6050	0.0000	2,485.736 1

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category		lb/day											lb/d	day		
Area	3.0799	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259
Energy	0.0405	0.3685	0.3095	2.2100e- 003		0.0280	0.0280		0.0280	0.0280		442.1867	442.1867	8.4800e- 003	8.1100e- 003	444.8144
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Total	3.1204	0.3686	0.3209	2.2100e- 003	0.0000	0.0281	0.0281	0.0000	0.0281	0.0281		442.2110	442.2110	8.5400e- 003	8.1100e- 003	444.8403

Mitigated Operational

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/d	day		
Area	3.0799	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259
Energy	0.0405	0.3685	0.3095	2.2100e- 003		0.0280	0.0280		0.0280	0.0280		442.1867	442.1867	8.4800e- 003	8.1100e- 003	444.8144
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	 	0.0000
Total	3.1204	0.3686	0.3209	2.2100e- 003	0.0000	0.0281	0.0281	0.0000	0.0281	0.0281		442.2110	442.2110	8.5400e- 003	8.1100e- 003	444.8403

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.0 Construction Detail

Construction Phase

Pha Nun	ase nber	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
1	D	emolition	Demolition	1/1/2019	1/28/2019	5	20	

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name	Offroad Equipment Type	Amount	Usage Hours	Horse Power	Load Factor
Demolition	Concrete/Industrial Saws	1	8.00	81	0.73
Demolition	Tractors/Loaders/Backhoes	3	8.00	97	0.37
Demolition	Rubber Tired Dozers	1	8.00	247	0.40

Trips and VMT

Phase Name	Offroad Equipment Count	Worker Trip Number	Vendor Trip Number	Hauling Trip Number	Worker Trip Length	Vendor Trip Length	Hauling Trip Length		Vendor Vehicle Class	Hauling Vehicle Class
Demolition	5	13.00	0.00	0.00	10.80	7.30	20.00	LD_Mix	HDT_Mix	HHDT

CalEEMod Version: CalEEMod.2016.3.2

AVCCD 2016 FMP - 2018 Existing Conditions - Los Angeles-Mojave Desert County, Winter

3.1 Mitigation Measures Construction

Reduce Vehicle Speed on Unpaved Roads

3.2 Demolition - 2019

Unmitigated Construction On-Site

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
Off-Road	2.2950	22.6751	14.8943	0.0241		1.2863	1.2863		1.2017	1.2017		2,360.719 8	2,360.719 8	0.6011		2,375.747 5
Total	2.2950	22.6751	14.8943	0.0241	0.0000	1.2863	1.2863	0.0000	1.2017	1.2017		2,360.719 8	2,360.719 8	0.6011		2,375.747 5

3.2 Demolition - 2019

Unmitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	day		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0568	0.0401	0.4410	1.1000e- 003	0.1068	9.4000e- 004	0.1077	0.0283	8.7000e- 004	0.0292		109.8923	109.8923	3.8500e- 003		109.9886
Total	0.0568	0.0401	0.4410	1.1000e- 003	0.1068	9.4000e- 004	0.1077	0.0283	8.7000e- 004	0.0292		109.8923	109.8923	3.8500e- 003		109.9886

Mitigated Construction On-Site

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/o	day							lb/c	lay		
Fugitive Dust					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000			0.0000
Off-Road	2.2950	22.6751	14.8943	0.0241		1.2863	1.2863		1.2017	1.2017	0.0000	2,360.719 7	2,360.719 7	0.6011		2,375.747 5
Total	2.2950	22.6751	14.8943	0.0241	0.0000	1.2863	1.2863	0.0000	1.2017	1.2017	0.0000	2,360.719 7	2,360.719 7	0.6011		2,375.747 5

3.2 Demolition - 2019

Mitigated Construction Off-Site

	ROG	NOx	СО	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/	day							lb/c	lay		
Hauling	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Vendor	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Worker	0.0568	0.0401	0.4410	1.1000e- 003	0.1068	9.4000e- 004	0.1077	0.0283	8.7000e- 004	0.0292		109.8923	109.8923	3.8500e- 003		109.9886
Total	0.0568	0.0401	0.4410	1.1000e- 003	0.1068	9.4000e- 004	0.1077	0.0283	8.7000e- 004	0.0292		109.8923	109.8923	3.8500e- 003		109.9886

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
Mitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000		0.0000

4.2 Trip Summary Information

	Ave	rage Daily Trip Ra	ate	Unmitigated	Mitigated
Land Use	Weekday	Saturday	Sunday	Annual VMT	Annual VMT
General Office Building	0.00	0.00	0.00		
High School	0.00	0.00	0.00		
Library	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

		Miles			Trip %			Trip Purpos	e %
Land Use	H-W or C-W	H-S or C-C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O or C-NW	Primary	Diverted	Pass-by
General Office Building	9.50	7.30	7.30	33.00	48.00	19.00	77	19	4
High School	9.50	7.30	7.30	77.80	17.20	5.00	75	19	6
Library	9.50	7.30	7.30	52.00	43.00	5.00	44	44	12

4.4 Fleet Mix

Land Use	LDA	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	MH
General Office Building	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
High School	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891
Library	0.547192	0.045177	0.202743	0.121510	0.016147	0.006143	0.019743	0.029945	0.002479	0.002270	0.005078	0.000682	0.000891

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/e	day							lb/c	lay		
NaturalGas Mitigated	0.0405	0.3685	0.3095	2.2100e- 003		0.0280	0.0280		0.0280	0.0280		442.1867	442.1867	8.4800e- 003	8.1100e- 003	444.8144
NaturalGas Unmitigated	0.0405	0.3685	0.3095	2.2100e- 003		0.0280	0.0280		0.0280	0.0280		442.1867	442.1867	8.4800e- 003	8.1100e- 003	444.8144

5.2 Energy by Land Use - NaturalGas

<u>Unmitigated</u>

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/e	day							lb/c	lay		
General Office Building	658.071	7.1000e- 003	0.0645	0.0542	3.9000e- 004		4.9000e- 003	4.9000e- 003		4.9000e- 003	4.9000e- 003		77.4201	77.4201	1.4800e- 003	1.4200e- 003	77.8802
High School	2391.14	0.0258	0.2344	0.1969	1.4100e- 003		0.0178	0.0178		0.0178	0.0178		281.3109	281.3109	5.3900e- 003	5.1600e- 003	282.9825
Library	709.374	7.6500e- 003	0.0696	0.0584	4.2000e- 004		5.2900e- 003	5.2900e- 003		5.2900e- 003	5.2900e- 003		83.4558	83.4558	1.6000e- 003	1.5300e- 003	83.9517
Total		0.0405	0.3685	0.3095	2.2200e- 003		0.0280	0.0280		0.0280	0.0280		442.1867	442.1867	8.4700e- 003	8.1100e- 003	444.8144

Mitigated

	NaturalGa s Use	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Land Use	kBTU/yr					lb/	day							lb/c	lay		
General Office Building	0.658071	7.1000e- 003	0.0645	0.0542	3.9000e- 004		4.9000e- 003	4.9000e- 003		4.9000e- 003	4.9000e- 003		77.4201	77.4201	1.4800e- 003	1.4200e- 003	77.8802
High School	2.39114	0.0258	0.2344	0.1969	1.4100e- 003		0.0178	0.0178		0.0178	0.0178		281.3109	281.3109	5.3900e- 003	5.1600e- 003	282.9825
Library	0.709374	7.6500e- 003	0.0696	0.0584	4.2000e- 004		5.2900e- 003	5.2900e- 003		5.2900e- 003	5.2900e- 003		83.4558	83.4558	1.6000e- 003	1.5300e- 003	83.9517
Total		0.0405	0.3685	0.3095	2.2200e- 003		0.0280	0.0280		0.0280	0.0280		442.1867	442.1867	8.4700e- 003	8.1100e- 003	444.8144

6.0 Area Detail

6.1 Mitigation Measures Area

Use Low VOC Paint - Residential Interior Use Low VOC Paint - Residential Exterior Use Low VOC Paint - Non-Residential Interior Use Low VOC Paint - Non-Residential Exterior

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
Category					lb/c	day							lb/d	lay		
Mitigated	3.0799	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259
Unmitigated	3.0799	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259

6.2 Area by SubCategory

<u>Unmitigated</u>

	ROG	NOx	со	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory					lb/d	day							lb/d	day		
Architectural Coating	0.7045					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Consumer Products	2.3744					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landscaping	1.0600e- 003	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259
Total	3.0799	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259

Mitigated

	ROG	NOx	CO	SO2	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio- CO2	Total CO2	CH4	N2O	CO2e
SubCategory	lb/day							lb/d	day							
Architectural Coating	0.7045					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
	2.3744					0.0000	0.0000		0.0000	0.0000			0.0000			0.0000
Landocaping	1.0600e- 003	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259
Total	3.0799	1.0000e- 004	0.0114	0.0000		4.0000e- 005	4.0000e- 005		4.0000e- 005	4.0000e- 005		0.0243	0.0243	6.0000e- 005		0.0259

7.0 Water Detail

7.1 Mitigation Measures Water

Install Low Flow Toilet

Use Water Efficient Irrigation System

8.0 Waste Detail

8.1 Mitigation Measures Waste

9.0 Operational Offroad

Equipment Type Number Hours/Day	Days/Year	Horse Power	Load Factor	Fuel Type
---------------------------------	-----------	-------------	-------------	-----------

10.0 Stationary Equipment

Fire Pumps and Emergency Generators

Equipment Type Number Hours/Day Hours/Year Horse Power Load Factor Fuel Type
--

Boilers

Equipment Type	Number	Heat Input/Dav	Heat Input/Year	Boiler Rating	Fuel Type
Equipment Type	Number	near input/Day	near input/real	Doner Rating	гистуре

User Defined Equipment

Equipment Type	Number

11.0 Vegetation

AVCCD 2016 FMP CalEEMod (Version 2016.3.2) Notes

Note 1

- High School Land Use Subtype was used for the following buildings: Sage Hall, Cedar Hall, Joshua Hall, Marauder Complex, and Discovery Hall.
- Library Land Use Subtype was used for the following building: Academic Commons.
- General Office Building Land Use Subtype was used for the following buildings: Student Services and Campus Security.
- The Tennis and Volleyball Courts were not included in the construction land use model as they would not generate independent operational demand for vehicle trips or energy/water requirements under normal circumstances that can be captured by any specific subtype in CalEEMod Version 2016.3.2. Excavation requirements for these land uses are captured in the overall excavation requirements for the 2016 FMP.
- Recreational Swimming Pool Land Use Subtype was used for the adaptive pool described in the 2016 FMP.

Note 2

Demolition and Construction phases adjusted to fill two full years with the following days per phase:

- Demolition 40 days
- Grading 40 days
- Construction 300 days
- Paving 40 days
- Architectural Coating 100 days

Note 3

See this Appendix for square footage and cut/fill material calculations.

Note 4

Incorporation of AVAQMD Rule 1113, which requires the use of low VOC paint 50 g/L for interior residential, 100 g/L exterior residential, and 150 g/L interior and exterior commercial/institutional.

Note 5

Vehicle trips generated by operation of the project were adjusted to reflect the vehicle trips generated as contained in the Fehr & Peers Traffic Impact Analysis (2018). As the Adaptive PE Pool contains only 3,000 square feet, the Recreational Pool Land Use Subtype was used as a simplified way of inserting the anticipated additional trips generated by the project (3,236) in a 'per 1,000 square feet' format. To show daily vehicle trips of 3,236 in the model, 1,078.67 daily trips were used for the trip rate coefficients.

Because the total increase in trips resulting from the 2016 FMP (3,236) are applied to the Recreational Pool Land Use Subtype, non-residential trip distribution from the High School Land Use Subtype was carried over. One hundred percent of trips are considered "Primary Trips" as 100 percent of added trips are generated by the 2016 FMP; "Diverted Trips" and "Pass-By Trips" were set to zero percent.

Note 6

Incorporation of AVAQMD Rule 403, which requires dust control measures and 15 mph off-road vehicle speeds.

Note 7

Incorporation of AVAQMD Rule 1113, which requires the use of low VOC paint 50 g/L for interior residential, 100 g/L exterior residential, and 150 g/L interior and exterior commercial/institutional.

Note 8

Recreational Swimming Pool Land Use is set to zero for solid waste generation due to the Adaptive PE Pool being part of an existing campus. The default Recreational Swimming Pool solid waste generation in CalEEMod assumes that the swimming pool is a stand-alone facility that generates solid waste from patrons that would travel there just to use the pool.

Note 9

- High School Land Use Subtype was used for the following buildings: SSV, LS1, LS2, ME, TE1, TE2, T503, T504, T100, T850, and T851.
- Library Land Use Subtype was used for the following buildings: LC.
- General Office Building Land Use Subtype was used for the following buildings: OF2, OF1, OF3, and T800.
- The purpose of running a 2018 CalEEMod iteration using the land uses planned for demolition is to identify the change in operational emissions between existing (2018) and future (2030) conditions.

Note 10

Construction emissions are irrelevant for this iteration of CalEEMod as it is intended to identify the change in operational emissions between 2018 and 2030 conditions.

Note 11

All trip generation coefficients are set to zero due to all additional trips generated by the 2016 FMP from 2018 to 2030 conditions are captured in the 2030 CalEEMod iteration. Values here are therefore set to zero to avoid inaccurately adding to total additional mobile emissions.

Square Footage (SF) of Structures Planned for Construction

quare Footage
5,741
51,146
62,744
34,295
27,000
27,000
15,288
30,288
3,000
256,502
110,952
145,550
:
133,871
51,146
68,485
68,485
68,485 3,000

Total

256,502

Square Footage (SF) of Structures Planned for Demolition

Structure Name	Square Footage
SSV - Student Services	29,302
LC - Learning Center	15,412
OF2 - Faculty Office	3,483
LS1 - Liberal Studies - SS	8,944
LS2 - Liberal Studies - LANG	7,997
OF1 - Faculty Office	2,803
ME - Math & Engineering	9,319
TE1 - Tech Ed - ELECTR	4,118
TE2 - Tech Ed - WELD/FIRE	10,127
OF3 - Faculty Office	4,887
т503	2,160
Т504	2,160
T800 - Campus Security	2,800
Т100	3,840
Т850	2,160
T851	1,440

Total

110,952

CalEEMod Demolition Entries:	
High School Land Use (SSV, LS1,	
LS2, ME, TE1, TE2, T503, T504,	
T100, T850, T851)	81,567
Library Land Use (LC)	15,412
General Office Land Use (OF2,	
OF1, OF3, T800)	13,973
Total	110,952

Geotechnical Reports

Supporting Geotechnical Reports

Final 10-17664PW Academic Commons Geotechnical Report

Section 1.2, Proposed Development, on page 1 of the report reads...

"Based on the Preliminary Site Plans by KPFF Consulting Engineers, Antelope Valley College plans to build a new two story Academic Commons building at the subject site. We understand that the building structure is a steel frame construction. The building footprint of the proposed structure is about 18,000 square feet. We understand that the building will be supported by typical slab-on-grade and shallow foundation system."

Section 4.1.2, Excavation/Overexcavation, on page 14 of the report reads...

"Existing fill soils within the proposed building area should be overexcavated to a depth of 2 feet below existing grade or to a sufficient depth to remove all of the undocumented fill materials in their entirety from within the proposed building area. Deeper undocumented fill layers may be present locally at the site and the depth and extent of the fill should be verified during the grading operation."

Final 10-17664PW Community Center Geotechnical Report

Section 1.2, Proposed Development, on page 1 of the report reads...

"Based on the Preliminary Site Plans by KPFF Consulting Engineers, Antelope Valley College plans to build a new single-story Community Center building at the subject site. We understand that the building structure is a steel frame and CMU shear wall construction. The building footprint of the proposed structure is about 34,000 square feet. We understand that the building will be supported on typical slab-on-grade and shallow foundation system."

Section 4.1.2, Excavation/Overexcavation, on page 14 of the report reads...

"Existing fill soils within the proposed building area should be overexcavated to a depth of 1 feet below existing grade or to a sufficient depth to remove all of the undocumented fill materials in their entirety from within the proposed building area. Deeper undocumented fill layers may be present locally at the site and the depth and extent of the fill should be verified during the grading operation."

Final 10-17664PW CTE Building Geotechnical Report

Section 1.2, Proposed Development, on page 1 of the report reads...

"Based on the Preliminary Site Plans by KPFF Consulting Engineers, Antelope Valley College plans to build a new single story CTE building at the subject site. We understand that the building structure is a steel frame building. The building footprint of the proposed structure is about 26,300 square feet. We understand that the building will be supported on typical slab-on-grade and shallow foundation system."

Section 4.1.2, Excavation/Overexcavation, on page 14 of the report reads...

"Existing fill soils within the proposed building area should be overexcavated to a depth of 2 feet below existing grade or to a sufficient depth to remove all of the undocumented fill materials in their entirety from within the proposed building area. Deeper undocumented fill layers may be present locally at the site and the depth and extent of the fill should be verified during the grading operation."

Final 10-17664PW Security Building Geotechnical Report

Section 1.2, Proposed Development, on page 1 of the report reads...

"Based on the Preliminary Site Plans by KPFF Consulting Engineers, Antelope Valley College plans to build a new single story campus security building at the subject site. We understand that the building structure is a bare-metal deck structure using load bearing CMU walls and steel frames construction. The building footprint of the proposed structure is about 3,000 square feet. We understand that the building will be supported on typical slab-on-grade and shallow foundation system."

Section 4.1.2, Excavation/Overexcavation, on page 14 of the report reads...

"Existing fill soils within the proposed building area should be overexcavated to a depth of 2 feet below existing grade or to a sufficient depth to remove all of the undocumented fill materials in their entirety from within the proposed building area. Deeper undocumented fill layers may be present locally at the site and the depth and extent of the fill should be verified during the grading operation."

Final 10-17664PW Student Center Geotechnical Report

Section 1.2, Proposed Development, on page 1 of the report reads...

"Based on the Preliminary Site Plans by KPFF Consulting Engineers, Antelope Valley College plans to build a new two-story Student Services building at the subject site. We understand that the building structure is a concrete/metal deck building with steel frame construction. The building footprint of the proposed structure is about 34,000 square feet. We understand that the building will be supported on typical slab-on-grade and shallow foundation system."

Section 4.1.2, Excavation/Overexcavation, on page 14 of the report reads...

"Existing fill soils within the proposed building area should be overexcavated to a depth of 2 feet below existing grade or to a sufficient depth to remove all of the undocumented fill materials in their entirety from within the proposed building area. Deeper undocumented fill layers may be present locally at the site and the depth and extent of the fill should be verified during the grading operation."

Final 10-17664PW Student Services Geotechnical Report

Section 1.2, Proposed Development, on page 1 of the report reads...

"Based on the Preliminary Site Plans by KPFF Consulting Engineers, Antelope Valley College plans to build a new two-story Student Services building at the subject site. We understand that the building structure is a concrete/metal deck building with steel frame construction. The building footprint of the proposed structure is about 34,000 square feet. We understand that the building will be supported on typical slab-on-grade and shallow foundation system."

Section 4.1.2, Excavation/Overexcavation, on page 14 of the report reads...

"Existing fill soils within the proposed building area should be overexcavated to a depth of 2 feet below existing grade or to a sufficient depth to remove all of the undocumented fill materials in their entirety from within the proposed building area. Deeper undocumented fill layers may be present locally at the site and the depth and extent of the fill should be verified during the grading operation."

Final 10-17664PW Tennis Courts Geotechnical Report

Section 4.1.2, Excavation/Overexcavation, on page 14 of the report reads...

"Existing fill soils within the proposed building area should be overexcavated to a depth of 1 feet below existing grade or to a sufficient depth to remove all of the undocumented fill materials in their entirety from within the proposed building area. Deeper undocumented fill layers may be present locally at the site and the depth and extent of the fill should be verified during the grading operation."

Ambient Noise Monitoring Sheets

Environmental Scientists Planners Engineers www.rinconconsultants.com

Ambient Noise Survey Data Sheet

Instructions: Document noise measurement locations with a photo of the site, including the noise meter. Additionally, take notes on general and secondary noise sources, including the instantaneous noise level if possible. As a reminder, A/C weighting should be set to "A" and generally response time should be set to "fast." For additional information, please review the Noise Measurement Protocol in the pelican case.

Project Name: AVC Job Number: Norman Name
Date: Operator Name: V(\\Y\L_S)(_V
Measurement #1
Location: <u>b1</u> Begin time: <u>7:34</u> Finish time: <u>7:44</u>
Measurement No.: Wind (mph): Direction:
Cloud Cover Class: Overcast (>80%) Light (20-80%) Sunny (<20%)
Calibration (dB): Start: 94 End:
Primary Noise Sources: Avenue K traffic Distance:
Secondary Noise Sources:
Notes: 45 mph, 6 lanes total
INT WAT WAT WAT WAT WAT WAT WAT IN
Traffic Count: Passenger Cars: INT
Medium to Heavy Duty Trucks (3 axles): Heavy Duty Trucks (4+ axles):
Instantaneous Noise Sources/Levels (e.g., airplane, bus airbrake, etc.):
Leq: <u>13.0</u> SEL: <u>100,1</u> Lmax: <u>84.2</u> Lmin: <u>47.2</u> PK: <u>103.6</u>
L(05): L(10): L(50): L(90): L(95):
Response: Slow 🗆 Fast 🗹 Peak 🗆 Impulse 🗆
Measurement #2
Location: <u>2</u> Begin time: <u>7:52</u> Finish time: <u>8:02</u>
Location: <u>2</u> Begin time: <u>7:52</u> Finish time: <u>8:02</u>
Location: 2 Begin time: 7:52 Finish time: 8:02 Measurement No.: 2 Wind (mph): Direction:
Location: 2 Begin time: 7:52 Finish time: 8:02 Measurement No.: 2 Wind (mph): Direction:
Location: 2 Begin time: 7:52 Finish time: 8:02 Measurement No.: 2 Wind (mph): Direction: Cloud Cover Class: Overcast (>80%) Light (20-80%) Sunny (<20%)
Location: 2 Begin time: $7:52$ Finish time: $8:02$ Measurement No.: 2 Wind (mph): Direction: Cloud Cover Class: Overcast (>80%) Light (20-80%) Sunny (<20%)
Location: 2 Begin time: $7:52$ Finish time: $8:02$ Measurement No.: 2 Wind (mph): Direction: Cloud Cover Class: Overcast (>80%) Light (20-80%) Sunny (<20%)
Location: 2 Begin time: 7:52 Finish time: 8:02 Measurement No.: 2 Wind (mph): Direction: Cloud Cover Class: Overcast (>80%) Light (20-80%) Sunny (<20%)
Location: 2 Begin time: 7:52 Finish time: 8:02 Measurement No.: 2 Wind (mph): Direction: Cloud Cover Class: Overcast (>80%) Light (20-80%) Sunny (<20%)
Location: 2 Begin time: 7:52 Finish time: 8:02 Measurement No.: 2 Wind (mph): Direction: Cloud Cover Class: Overcast (>80%) Light (20-80%) Sunny (<20%)
Location: 2 Begin time: 7:52 Finish time: 8:02 Measurement No.: 2 Wind (mph): Direction: Cloud Cover Class: Overcast (>80%) Light (20-80%) Sunny (<20%)
Location: 2 Begin time: 7:52 Finish time: 8:02 Measurement No.: 2 Wind (mph): Direction: Cloud Cover Class: Overcast (>80%) Light (20-80%) Sunny (<20%)

Form Updated: 10/2/2017

Ambient Noise Survey Data Sheet

Instructions: Document noise measurement locations with a photo of the site, including the noise meter. Additionally, take notes on general and secondary noise sources, including the instantaneous noise level if possible. As a reminder, A/C weighting should be set to "A" and generally response time should be set to "fast." For additional information, please review the *Noise Measurement Protocol* in the pelican case.

Project Name: AVC Job Number: <u>17-05233</u> Date: <u>62018</u> Operator Name: <u>Vanessa V</u>
Measurement #1
Location: 3 Begin time: 8:08 Finish time: 8:18 Measurement No.: 3 Wind (mph): Direction:
Cloud Cover Class: Overcast (>80%) □ Light (20-80%) □ Sunny (<20%)
Secondary Noise Sources: Notes: <u>4 James total</u> , one motorcycle @ 8:14
Traffic Count: Passenger Cars: Image: Carse content in the conten
Instantaneous Noise Sources/Levels (e.g., airplane, bus airbrake, etc.): Leq: 68.1 SEL: 95.9 Lmax: 88.0 Lumin: 97.9 PK: 100.0 L(05): L(10): L(10): L(50): Response: Slow Fast Peak Impulse 1
Measurement #2
Location: 4 Begin time: 8:40 Finish time: 8:50 Measurement No.: 4 Wind (mph): Direction:
Cloud Cover Class: Overcast (>80%) [Light (20-80%) [Sunny (<20%) [Calibration (dB): Start: 94 End: Primary Noise Sources: birds (loud crows) Distance: Secondary Noise Sources: walking/talking students (staff, campus Karts Notes: Some landscaping maintenance.
Traffic Count: Passenger Cars:
Instantaneous Noise Sources/Levels (e.g., airplane, bus airbrake, etc.):

Ambient Noise Survey Data Sheet

Instructions: Document noise measurement locations with a photo of the site, including the noise meter. Additionally, take notes on general and secondary noise sources, including the instantaneous noise level if possible. As a reminder, A/C weighting should be set to "A" and generally response time should be set to "fast." For additional information, please review the *Noise Measurement Protocol* in the pelican case.

Project Name: ANC Job Number: 11-052.33 Date: 6/20/18 Operator Name: Vanlssa V.
Measurement #1
Location:
Traffic Count: Passenger Cars: Image:
Measurement #2
Location: 56 Begin time: 9:20 Finish time: 9:30 Measurement No.: 6 Wind (mph): Direction: Cloud Cover Class: Overcast (>80%) Light (20-80%) Sunny (<20%)
Primary Noise Sources: <u>pirds</u> <u>Distance</u> : Secondary Noise Sources: <u>Arenue K traffic (minimal)</u> Notes:
Traffic Count: Passenger Cars: O Medium to Heavy Duty Trucks (3 axles): \bigcirc Heavy Duty Trucks (4+ axles): \bigcirc Instantaneous Noise Sources/Levels (e.g., airplane, bus airbrake, etc.): \bigcirc \bigcirc \bigcirc Leq: \checkmark \bigcirc \bigcirc \bigcirc \bigcirc L(05): \bigcirc \bigcirc \bigcirc \bigcirc Response: Slow \bigcirc Fast \bigcirc \bigcirc

Form Updated: 10/2/2017

Appendix F

Roadway Construction Noise Model (RCNM) Phasing Noise Calculations

Demolition_20180611 Roadway Construction Noise Model (RCNM), Version 1.1

Report date: Case Description:

Excavator

N/A

N/A

N/A

N/A

Dozer

N/A

N/A

06/11/2018 AVCCD 2016 FMP - Demolition Phase

**** Receptor #1 ****

		Baselines (dBA)	
Description	Land Use	Daytime	Eveni ng	Ni ght
Single-Family Residential	Resi denti al	65.0	65.0	45.0
	Equi j	pment		

Description	lmpact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estimated Shielding (dBA)
Excavator	No	40		80.7	50.0	0.0
Concrete Saw	No	20		89.6	50.0	0.0
Dozer	No	40		81.7	50.0	0.0
Excavator	No	40		80.7	50.0	0.0
Excavator	No	40		80.7	50.0	0.0
Dozer	No	40		81.7	50.0	0.0

Resul ts

_ _ _ _ _ _ _ _

Noise Limits (dBA)

N/A

N/A

N/A

N/A

N/A

Lmax

N/A

N/A

N/A

N/A

N/A

N/A

N/A

_ _ _ _ _ _

Ni ght		Day	Cal cul ate	ed (dBA) Evening		ay Night 	Eveni	ng
Equipment Leq	Lmax	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq
Excavator N/A Concrete	N/A	 N∕A	80.7 N/A 89.6	76.7 N/A 82.6	N/A N/A N/A	N/A N/A N/A	N/A N/A	N/A N/A
N/A Dozer N/A	N/A N/A	N∕A N∕A	N/A 81.7 N/A	N/A 77.7 N/A	N/A N/A N/A	N/A N/A N/A	N/A	N/A
Excavator N/A	N/A	N/A	80. 7 N/A	76.7 N/A	N/A N/A	N/A N/A	N/A	N/A

76.7

Noise Limit Exceedance (dBA)

80.7

N/A N/A N/A N/A N/A 77.7 81.7 N/A N/A N/A N/A N/A N/A N/A N/A 89.6 Total 86.4 N/A N/A N/A N/A N/A N/A N/A N/A

**** Receptor #2 ****

N/A

		Basel i nes	(dBA)	
Description	Land Use	Daytime	Éveni ng	Ni ght
Single-Family Residential	Residential	65.0	65.0	45.0

Demolition_20180611 Equipment

lmpact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estimated Shielding (dBA)
No	40		80.7	100. 0	0.0
No	20		89.6	100.0	0.0
No	40		81.7	100. 0	0.0
No	40		80.7	100. 0	0.0
No	40		80.7	100.0	0.0
No	40		81.7	100. 0	0.0
	Device No No No No No	Device (%) No 40 No 20 No 40 No 40 No 40 No 40	Impact Usage Lmax Device (%) (dBA) No 40 No 20 No 40 No 40 No 40 No 40	Impact Usage Lmax Lmax Device (%) (dBA) (dBA) No 40 80.7 No 20 89.6 No 40 81.7 No 40 80.7 No 40 80.7 No 40 80.7	Impact Usage Lmax Lmax Distance Device (%) (dBA) (dBA) (feet) No 40 80.7 100.0 No 20 89.6 100.0 No 40 81.7 100.0 No 40 80.7 100.0 No 40 80.7 100.0

Resul ts

Noise Limits (dBA)

Noise Limit Exceedance (dBA)

Ni ght		Day	Cal cul ate	ed (dBA) Eveni ng		ay Night 	Eveni	ng 	
Equipment Leq	Lmax	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq	Lmax
Excavator			74.7	70.7	N/A	 N/A	N/A	N/A	N/A
N/A Concrete S		N/A	N/A 83.6	N/A 76.6	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A Dozer	N/A	N/A	N/A 75.6	N/A 71.7	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A Excavator	N/A	N/A	N/A 74.7	N/A 70. 7	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A Excavator	N/A	N/A	N/A 74.7	N/A 70. 7	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A Dozer	N/A	N/A	N/A 75.6	N/A 71. 7	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A		N/A Total	N/A 83.6	N/A 80.4	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			

**** Receptor #3 ****

Description Land Use Church and School Commercial		Day	Base ytime 65.0	lines (dBA) Evening 65.0	Ni ght 45.0	
			Equ	uipment		
Description	lmpact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Di stance (feet)	
Excavator Concrete Saw Dozer Excavator Excavator Dozer	No No No No No No	40 20 40 40 40 40		80. 7 89. 6 81. 7 80. 7 80. 7 81. 7 Page 2	165. (165. (165. (165. (165. (165. (0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0

Demolition_20180611

Resul ts

Noise Limit Exceedance (dBA)

Noise Limits (dBA)

 Ni ght		 Day	Cal cul a	ted (dBA) Evening	 Da I	ay Ni ght	Eveni	ng	
					Lmax Lmax				Lmax
Excavator N/A		 N∕A	 70. 3	 66.4			N/A	N/A	N/A
Concrete S	aw		79.2	72.2 N/A	N/A	N/A	N/A	N/A	N/A
N/A Dozer	N/A	N/A	N/A 71.3	N/A 67.3	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A Excavator	N/A	N/A	N/A 70. 3	N/A 66.4	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Excavator N/A	N/A	N/A	70.3 N/A	66.4 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
Dozer N/A			71.3	67.3	N/A N/A	N/A N/A	N/A	N/A	N/A
	N/ A	Total	N/A 79. 2	67.3 N/A 76.1 N/A		N/A N/A	N/A	N/A	N/A
N/A	N/A	N/A	79.2 N/A	N/A	N/A	N/A			
				**** Rec	eptor #4 *	* * *			
Descriptio				Daytime	Basel i ne Eveni ng	Ni ght			
Church	-	Commerci		 65. 0		45.0			
					ipment				
Descriptio	'n	lmpact Device	(%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Distance (feet)	Shi el (dE	di ng BA)	
Excavator Concrete S Dozer Excavator Excavator Dozer	- aw	No No No No No No	40 20 40 40 40 40 40		80. 7 89. 6 81. 7 80. 7 80. 7 81. 7	$\begin{array}{c} 350.\ 0\\ 350.\ 0\\ 350.\ 0\\ 350.\ 0\\ 350.\ 0\\ 350.\ 0\\ 350.\ 0\\ 350.\ 0\end{array}$		0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0	
				Res	ults				
		Noi s	e Limit	 Exceedanc	e (dBA)		Noise Li	mits (d	IBA)

Calculated (dBA) Day Evening Night Day Evening Night Page 3

Equipment Leq	Lmax	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq	Lmax
							NI / A		
Excavator N/A	N/A	N/A	63.8 N/A	59.8 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
Concrete S		N/ A	72.7	65.7	N/A N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Dozer			64.8	60.8	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Excavator			63.8	59.8	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Excavator			63.8	59.8	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Dozer			64.8	60.8	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
	Т	otal	72.7	69.5	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			

Demol i ti on_20180611

Grading_20180611 Roadway Construction Noise Model (RCNM), Version 1.1

Report date: Case Description:

06/11/2018 AVCCD 2016 FMP - Demolition Phase

**** Receptor #1 ****

		Baselines	(dBA)	
Description	Land Use	Daytime	Eveni ng	Ni ght
Single-Family Residential	Resi denti al	65.0	65.0	45.0

	Equipment								
Description	lmpact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estimated Shielding (dBA)			
Excavator Dozer Grader Tractor Backhoe Tractor	No No No No No No	40 40 40 40 40 40 40	85.0 84.0 84.0	80. 7 81. 7 77. 6	50. 0 50. 0 50. 0 50. 0 50. 0 50. 0 50. 0	0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0			

Noise Limit Exceedance (dBA)

Resul ts

_ _ _ _ _ _ _ _

Noise Limits (dBA)

Ni ght		Day	Cal cul ated (dBA) Eveni ng		D. 	Day Ni ght		ng		
Equipment Leq	Lmax	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq	Lmax	
Excavator N/A	 N/A	 N/A	 80. 7 N/A	 76.7 N/A	 N/A N/A	N/A N/A	N/A	N/A	N/A	
Dozer			81.7	77.7	N/A	N/A	N/A	N/A	N/A	
N/A Grader	N/A	N/A	N/A 85.0	N/A 81.0	N/A N/A	N/A N/A	N/A	N/A	N/A	
N/A Tractor	N/A	N/A	N/A 84. 0	N/A 80. 0	N/A N/A	N/A N/A	N/A	N/A	N/A	
N/A Backhoe	N/A	N/A	N/A 77.6	N/A 73.6	N/A N/A	N/A N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Tractor N/A	N/A	N/A	84.0 N/A	80.0 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A	
N/A		Total N/A	85.0 N/A	86.6 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A	

**** Receptor #2 ****

		Basel i nes	(dBA)	
Description	Land Use	Daytime	Éveni ng	Ni ght
Single-Family Residential	Residential	65.0	65.0	45.0

	Gradi ng_20180611 Equi pment							
			Spec	Actual	Pocontor	Estimated		
Description	lmpact Device	Usage (%)	Lmax (dBA)	Lmax (dBA)	Receptor Di stance (feet)	Shi el di ng (dBA)		
 F					100.0			
Excavator Dozer	No No	40 40		80. 7 81. 7	100. 0 100. 0	0.0 0.0		
Grader	No	40	85.0		100.0	0.0		
Tractor	No	40	84.0	/	100.0	0.0		
Backhoe	No	40	04.0	77.6	100.0	0.0		
Tractor	No	40	84.0		100.0	0.0		

Resul ts

Noise Limits (dBA)

Noise Limit Exceedance (dBA)

Ni ght		Day	Calculated (dBA) Day Evening			ay Night 	Eveni ng			
Equipment Leq	Lmax	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq	Lmax	
Excavator N/A	 N/A	N/A	 74.7 N/A	70.7 N/A	N/A N/A	 N/A N/A	N/A	N/A	N/A	
Dozer			75.6	71.7	N/A	N/A	N/A	N/A	N/A	
N/A Grader	N/A	N/A	N/A 79.0	N/A 75.0	N/A N/A	N/A N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A				
Tractor N/A	N/A	N/A	78.0 N/A	74.0 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A	
Backhoe	N/A	N/ A	71.5	67.6	N/A	N/A N/A	N/A	N/A	N/A	
_N/A.	N/A	N/A	N/A	N/A	N/A	N/A	NI (A			
Tractor N/A	N/A	N/A	78.0 N/A	74.0 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A	
N/ A		otal	79.0	80. 6	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A				

**** Receptor #3 ****

Description Land Use Church and School Commercial			Day 	Base /time 65.0	lines (dBA) Evening 65.0	Night 45.0
			Equ	uipment		
Description	lmpact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Di stance (feet)	
Excavator Dozer Grader Tractor Backhoe Tractor	No No No No No No	40 40 40 40 40 40 40	85. 0 84. 0 84. 0	80.7 81.7 77.6 Page 2	165. (165. (165. (165. (165. (165. (0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0

Gradi ng_20180611

Results

Noise Limit Exceedance (dBA)

Noise Limits (dBA)

Ni ght		Day	Cal cul at	ted (dBA) Evening	Da I	ay Night	Eveni	ng 	
Equipment Leq	Lma>	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq	Lmax
Excavator N/A	 N/A	 N/A	70.3 N/A	66.4 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
Dozer N/A	N/A	N/A	71.3 N/A	67.3 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
Grader			74.6	70.7	N/A	N/A	N/A	N/A	N/A
N/A Tractor	N/A	N/A	N/A 73.6	N/A 69. 7	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A Backhoe	N/A	N/A	N/A 67.2	N/A 63.2	N/A N/A	N/A N/A	N/A	N/A	N/A
N/A Tractor	N/A	N/A	N/A 73.6	N/A 69.7	N/A N/A	N/A N/A	N/A	N/A	
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
N/A	N/A	Total N/A	74.6 N/A	76.2 N/A	N/A N/A	N/A N/A	N/A	N/A	N/A
				**** Rec	eptor #4 *	* * *			
Descriptic	n	Land Use	e C	Daytime	Basel i ne Eveni ng	es (dBA) Night			
Church	_	Commerci	al	65.0	65.0	45.0			
				Equ	ipment				
Descriptic	n	lmpact Device	Usage (%)	Spec Lmax (dBA)	Actual Lmax (dBA)	Receptor Distance (feet)	Estim Shiel (dB	di ng	
Excavator	-	No	40		80. 7	350. 0		0.0	
Dozer Grader		No No	40 40	85.0	81.7	350. 0 350. 0		0.0 0.0	
Tractor Backhoe		No No	40 40	84.0	77.6	350. 0 350. 0		0.0 0.0	
Tractor		No	40	84.0	77.0	350.0		0.0	
				Res	ults				
							Noise Li	mits	(dBA)
		Noi s	se Limit E	Exceedance	e (dBA)				
Ni ght		Day	Cal cul at	ted (dBA) Evening		ay Night	Eveni	ng	

Equipment Leq	Lmax	Leq	Lmax Lmax	Leq Leq	Lmax Lmax	Leq Leq	Lmax	Leq	Lmax
Excavator			 63. 8	 59. 8	 N/A	 N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			,
Dozer			64.8	60.8	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Grader			68.1	64.1	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Tractor			67.1	63.1	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Backhoe			60.7	56.7	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
Tractor			67.1	63.1	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			
		otal	68.1	69.7	N/A	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A			

Gradi ng_20180611

Building Construction_20180611 Roadway Construction Noise Model (RCNM), Version 1.1

Report date: Case Description:

06/11/2018 AVCCD 2016 FMP - Building Construction Phase

**** Receptor #1 ****

Description	E Land Use		aselines Daytime		Ni ght	
Single-Family Residential	Resi dent	i al	65.0	65.0	45.0	
		Equi pme	nt			
Estimated			Spec	Actual	Receptor	
	Impact	Usage	Lmax	Lmax	Di stance	
Shi el di ng Descri pti on	Devi ce	(%)	(dBA)	(dBA)	(feet)	(dBA)
Tractor 0.0	No	40	84.0		50.0	
Backhoe	No	40		77.6	50.0	
0.0 Tractor 0.0	No	40	84.0		50.0	
Crane	No	16		80.6	50.0	
0.0 All Other Equipment > 5 HP 0.0	No	50	85.0		50.0	
All Other Equipment > 5 HP	No	50	85.0		50.0	
0.0 All Other Equipment > 5 HP 0.0	No	50	85.0		50.0	
Generator 0.0	No	50		80.6	50.0	
Welder / Torch 0.0	No	40		74.0	50.0	

Resul ts

Noise Limit Exceedance (dBA)

Noise Limits (dBA)

Ni ght	Day	Cal cul ated (dBA) Eveni ng	Day Ni ght	Eveni ng
Equipment Lmax Leq	Lmax	Lmax Leq Leq Lmax Leq	Lmax Leq Lmax Leq	Lmax Leq
Tractor N/A N/A Backhoe N/A N/A Tractor N/A N/A	 N/A N/A N/A	84. 0 80. 0 N/A N/A N/A 77. 6 73. 6 N/A N/A N/A 84. 0 80. 0 N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A
Crane		80. 6 72. 6 Page 1	N/A N/A	N/A N/A

			Bui	Iding Co	onstructi	on_20180611			
N/A	N/A	N/A	N/A	Ň/A	N/A	N/A	N/A		
All Oth	ner Equipme	ent > 5	HP	85.0	82.0	N/A	N/A	N/A	N/A
N/A	N/A .	N/A	N/A	N/A	N/A	N/A	N/A		
All Oth	ner Equipme	ent > 5	HP	85.0	82.0	N/A	N/A	N/A	N/A
N/A	N/A .			N/A		N/A	N/A		
All Oth	ner Equipme	ent > 5	HP	85.0	82.0	N/A	N/A	N/A	N/A
N/A	N/A .	N/A	N/A	N/A	N/A	N/A	N/A		
Generat	or			80.6	77.6	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
Welder	/ Torch			74.0	70.0	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
		Tota		85.0	88.9	N/A	N/A	N/A	N/A
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
N/A Generat N/A Welder N/A	N/A or N/A / Torch N/A	N/A N/A N/A Tota	N/A N/A N/A	N/A 80. 6 74. 0 N/A 85. 0	N/A 77.6 70.0 N/A 88.9	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A	N/A N/A

**** Receptor #2 ****

Description	Land Use		aselines Daytime		Ni ght	
Single-Family Residential	Resi dent	ial	65.0	65.0	45.0	
		Equi pmer	nt			
			 Spec	Actual	Receptor	
Estimated	Impact	Usage	Lmax	Lmax	Di stance	
Shi el di ng Descri pti on 	Devi ce	(%)	(dBA)	(dBA)	(feet)	(dBA)
Tractor 0.0	No	40	84.0		100.0	
Backhoe 0.0	No	40		77.6	100. 0	
Tractor	No	40	84.0		100. 0	
0.0 Crane	No	16		80.6	100. 0	
0.0 All Other Equipment > 5 HP	No	50	85.0		100.0	
0.0 All Other Equipment > 5 HP	No	50	85.0		100.0	
0.0 All Other Equipment > 5 HP	No	50	85.0		100.0	
0.0 Generator	No	50		80.6	100.0	
0.0 Welder / Torch 0.0	No	40		74.0	100. 0	

Resul ts

_ _ _ _ _ _ _

Noise Limits (dBA)

Ni ght	Day	Cal cul ated (dBA) Eveni ng	Day Ni ght	Eveni ng	
Equipment Lmax Leq	Lmax	Lmax Leq Leq Lmax Leq Page 2	Lmax Leq Lmax Leq	- Lmax Leq	

Noise Limit Exceedance (dBA)

Building Construction_20180611								
Tractor N/A N/A N/A N/A	 78.0 N/A	74.0 N/A	 N/A N/A	N/A N/A N/A	N/A	N/A		
Backhoe	71.5	67.6	N/A	N/A	N/A	N/A		
Tractor	78.0	74.0	N/A N/A	N/A N/A	N/A	N/A		
N/A N/A N/A N/A Crane	74.5	66.6	N/A N/A	N/A N/A	N/A	N/A		
N/A N/A N/A N/A All Other Equipment > 5 HP	79.0	76.0	N/A N/A	N/A N/A	N/A	N/A		
N/A N/A N/A N/A All Other Equipment > 5 HP	79.0	76.0	N/A N/A	N/A N/A	N/A	N/A		
N/A N/A N/A N/A All Other Equipment > 5 HP	79.0	76.0	N/A N/A	N/A N/A	N/A	N/A		
N/A N/A N/A N/A Generator	N/A 74.6	N/A 71.6	N/A N/A	N/A N/A	N/A	N/A		
N/A N/A N/A N/A Welder / Torch	N/A 68. 0	N/A 64.0	N/A N/A	N/A N/A	N/A	N/A		
N/A N/A N/A N/A Total			N/A N/A	N/A N/A	N/A	N/A		
N/A N/A N/A N/A			N/A	N/A				
	* * * *	Receptor	#3 ****					
Description Land Use		Bas Daytime	elines (Evenir		-			
Church and School Commercia		 65. 0						
		Equi pment						
			Spec	Actual	Receptor			
Estimated	Impact	Usage	Lmax	Lmax	Distance			
Shi el di ng Description	Devi ce	(%)	(dBA)	(dBA)	(feet)	(dBA)		
Description		(%)	(UDA)	(UDA)	(reet)	(UDA)		
Tractor	No	40	84.0		165.0			
0.0 Backhoe	No	40		77.6	165.0			
0.0 Tractor	No	40	84.0		165.0			
0.0 Crane	No	16		80.6	165.0			
0.0 All Other Equipment > 5 HP	No	50	85.0		165.0			
0.0 All Other Equipment > 5 HP	No	50	85.0		165.0			
0.0 All Other Equipment > 5 HP	No	50	85.0		165.0			
0.0 Generator	No	50		80.6	165.0			
0.0 Welder / Torch	No	40		74.0	165.0			
0.0								

Resul ts

Noise Limits (dBA)

Noise Limit Exceedance (dBA) Page 3

Building Construction_20180611

li ght		Day	Ca	al cul ate Even	d (dBA ing 	.)	Ni g	Day ht 	Eveni r	g
Equipment max Leo	 9	Lmax								Leq
ractor	 A			73.6 N/A	 69. 7	 I/A	 N/A	 N/A	- N/A	N/A
Backhoe		N/A		67.2	63.2	I/A	N/A	N/A	N/A	N/A
ractor				N/A 73.6	69.7		N/A	N/A	N/A	N/A
I/A N// Crane		N/A		70.2	02. 2		N/A N/A	N/A	N/A	N/A
All Other I	Equi pme		ΗP	74.6	71.6	I/A	N/A N/A	N/A	N/A	N/A
All Other I		nt > 5 ł	ΗP	74.6	71.6	I/A	N/A N/A	N/A	N/A	N/A
N/A N/A	Equi pme		N/A HP	74.6	71.6	I/A	N/A N/A	N/A	N/A	N/A
I/A N// Generator			N/A	70.3	67.2	I/A	N/A N/A	N/A	N/A	N/A
I/A N// Velder / To	orch	N/A		63.6	N 59. 7		N/A N/A	N/A	N/A	N/A
J/A N//		N/A Total	N/A	74.6	78.6	I/A	N/A N/A	N/A	N/A	N/A
I/A N/	4	N/A	N/A			I/A	N∕A ≉4 ****	N/A		
					•					
)escriptio		nd Use			e E 	veni	ng 	Night 		
Church	Со	mmercial		65.	0	65	5.0	45.0		
					Equi pr	ent				
stimated							Spec	Actual	Receptor	
hi el di ng				-	-			Lmax		
escriptio	า -			Devi ce	(%)		(dBA)	(dBA)	(feet)	
ractor				No	40)	84.0		350. C)
). 0 Backhoe				No	40)		77.6	350. C)
). 0 Tractor				No	40)	84.0		350. C	1
). 0 Crane				No	16	•		80.6	350. C)
0.0 11 Other	Equi pme	nt > 5 ł	ΗP	No	50)	85.0		350. C)
0.0 11 Other 1	Equi pme	nt > 5 ł	ΗP	No	50)	85.0		350. C)
0.0 11 Other 1	Equi pme	nt > 5 ł	ΗP	No	50)	85.0		350. C)
).0 Generator				No	50 Page			80.6	350. C)

Building Construction_20180611

0.0 Welder / Torch 0.0

No 74.0 350.0 40

Resul ts _____

Noise Limit Exceedance (dBA)

Noise Limits (dBA)

Ni ght	Day	Ca 	al cul ateo Eveni	d (dBA) ng	Day Ni ght	y 	Eveni	ng
Equipment Lmax Leg				Leq	Lmax	Leq	- Lmax	Leq
Lmax Leq	Lmax	Leq 	Lmax	k Leq	Lmax	Leq		
							-	
Tractor	NI / A	NI / A	67.1		N/A	N/A	N/A	N/A
N/A N/A	N/A	N/A		N/A	N/A	N/A	NI / A	NI 7.4
Backhoe N/A N/A	NI / A	NI / A	60.7	56.7	N/A	N/A	N/A	N/A
N/A N/A Tractor	N/A	N/A		N/A 63.1	N/A N/A	N/A N/A	N/A	N/A
N/A N/A	N/A	N / A		03. T N/A	N/A	N/A	N/A	N/A
Crane	N/ A		63.6	55.7	N/A	N/A	N/A	N/A
N/A N/A	N/A	N/A			N/A	N/A	NZ A	
	uipment > 5 l			65.1	N/A	N/A	N/A	N/A
N/A N/A	N/A	N/A	N/A		N/A	N/A		
	uipment > 5 l		68.1	65.1	N/A	N/A	N/A	N/A
N/A N/A	' N∕A	N/A			N/A	N/A		
All Other Eq	uipment > 5 l	HP	68.1	65.1	N/A	N/A	N/A	N/A
N/A N/A		N/A	N/A		N/A	N/A		
Generator			63.7	60.7	N/A	N/A	N/A	N/A
N/A N/A	N/A	N/A			N/A	N/A		
Welder / Tor			57.1	53.1	N/A	N/A	N/A	N/A
N/A N/A	N/A	N/A			N/A	N/A		
	Total		68.1	72.0	N/A	N/A	N/A	N/A
N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A		

Paving_20180611 Roadway Construction Noise Model (RCNM), Version 1.1

Report date: Case Description:

06/11/2018 AVCCD 2016 FMP - Paving Phase

**** Receptor #1 ****

Description Single-Family Residential	Land Use Resi dent	1	aselines Daytime 65.0	(dBA) Eveni ng 65. 0	Ni ght 45. 0				
Equi pment									
-			 Spec	Actual	Receptor				
Estimated	Impact	Usage	Lmax	Lmax	Di stance				
Shi el di ng Descri pti on	Devi ce	(%)	(dBA)	(dBA)	(feet)	(dBA)			
All Other Equipment > 5 HP	No	50	85.0		50.0				
0.0 All Other Equipment > 5 HP	No	50	85.0		50.0				
0.0 Paver	No	50		77.2	50.0				
0.0 Roller	No	20		80.0	50.0				
0.0 Roller 0.0	No	20		80.0	50.0				

Resul ts

_ _ _ _ _ _ _ _

Noise Limits (dBA)

Noise Limit Exceedance (dBA)

Ni ght	D	Cal cul ated (dBA) Day Eveni ng			Day Ni ght		Eveni ng	
Equipment Lmax L		lax Leq	.max Le Lmax	eq Leq	Lmax Lmax	Leq Leq	Lmax	Leq
	Equipment	> 5 HP 85 /A N/A		0 N/A	 N/A N/A	N/A N/A	N/A	N/A
All Other	Equipment	> 5 HP 85	5.0 82.		N/A N/A		N/A	N/A
Paver	/A N/	77	7.2 74.	2 N/A	N/A N/A	N/A N/A	N/A	N/A
Roller	/A N/	80	0.0 73.	0 N/A	N/A N/A		N/A	N/A
Roller	/A N/	80	0.0 73.		N/A N/A		N/A	N/A
		otal 85	5. 0 85. N/A		N/A N/A		N/A	N/A

**** Receptor #2 ****

Page 1

	Pav	vi ng_201							
Description	Land Use		aselines Daytime	Eveni ng	Ni ght				
Single-Family Residential	Resident	ial	65.0	65.0	45.0				
Equipment									
			 Spec	Actual	Receptor				
Estimated	Impact	Usage	Lmax	Lmax	Di stance				
Shi el di ng Descri pti on	Devi ce	(%)	(dBA)	(dBA)	(feet)	(dBA)			
AII Other Equipment > 5 HP	No		 85.0		100. 0				
0.0 All Other Equipment > 5 HP	No	50	85.0		100.0				
0.0 Paver	No	50	03.0	77.2	100.0				
0.0 Roller	No	20		80.0	100.0				
0.0 Roller 0.0	No	20		80.0	100.0				
0.0									

Resul ts

_ _ _ _ _ _ _ _

Noise Limits (dBA)

Noise Limit Exceedance (dBA)

Ni ght	Day	Cal cul ated (dBA) Eveni ng	Day Ni ght	Eveni ng
Equipment Lmax Leq	Lmax Le	Lmax Leq q Lmax Leq	Lmax Leq Lmax Leq Lmax Leq	- Lmax Leq
All Other Equip	ment > 5 HP N/A N/		 N/A N/A N/A N/A	- N/A N/A
All Other Equip		79.0 76.0	N/A N/A N/A N/A	N/A N/A
Paver N/A N/A	N/A N/	71.2 68.2 A N/A N/A	N/A N/A N/A N/A	N/A N/A
Roller N/A N/A	N/A N/		N/A N/A N/A N/A	N/A N/A
Roller N/A N/A	NZA NZ		N/A N/A N/A N/A	N/A N/A
N/A N/A	Total N/A N/	79.0 79.8 A N/A N/A	N/A N/A N/A N/A	N/A N/A

**** Receptor #3 ****

		Baselines (dBA)			
Description	Land Use	Daytime	Evening	Night	
Church and School	Commerci al	65.0	65.0	45.0	
		Fauinment			

Equipment

Page 2

Receptor
Distance
(feet) (dBA)
165.0
165.0
165.0
165. 0
165.0

Results

Noise Limits (dBA)

Noise Limit Exceedance (dBA)

						Day	,	Evoni	na
Ni ght		Day		Eveni	d (dBA) ng	Ni ght		Eveni	
Equipme Lmax		Lmax	Leq			Lmax Lmax	Leq Leq	- Lmax	Leq
AII Oth N/A		pment > 5 H N/A	 P N/A	74.6 N/A	71.6 N/A	N/A N/A	 N/A N/A	- N/A	N/A
ALL OTH	ner Equi	pment > 5 H N/A		74.6		N/A N/A	N/A N/A	N/A	N/A
Paver N/A	N/A	N/A		66. 8 N/A	63.8	N/A N/A	N/A N/A	N/A	N/A
Roller N/A	N/A	N/A		69.6 N/A	62.6	N/A N/A	N/A N/A	N/A	N/A
Roller N/A	N/A	N/A		69.6	62. 6 N/A	N/A N/A	N/A N/A	N/A	N/A
N/A		Total N/A			75.5	N/A N/A	N/A N/A	N/A	N/A
				****	Receptor #	4 ****			
Descrip	otion	Land Use		Daytime		elines (dE ng Niç			
Church		Commercial		65.0	0 65	5.0 45	5.0		

Equipment

Estimated			Spec	Actual	Receptor	
	Impact	Usage	Lmax	Lmax	Distance	
Shi el di ng Descri pti on	Devi ce	(%)	(dBA)	(dBA)	(feet)	(dBA)

Pavi ng_20180611												
All Other Equipment > 5 HP 0.0	No	50	85.0		350.0							
All Other Equipment > 5 HP	No	50	85.0		350.0							
0.0 Paver	No	50		77.2	350.0							
0.0 Roller	No	20		80. 0	350.0							
0.0 Roller	No	20		80.0	350.0							
0.0												

Resul ts

Noise Limit Exceedance (dBA)

Noise Limits (dBA)

Ni ght	Day	Cal cul ated (dBA) Eveni ng	Day Ni ght	Eveni ng
Equipment Lmax Leq	Lmax	Lmax Leq Leq Lmax Leq	Lmax Leq Lmax Leq	- Lmax Leq
All Other Equip			N/A N/A N/A N/A	- N/A N/A
All Other Equip			N/A N/A N/A N/A	N/A N/A
Paver N/A N/A	N/A	60.3 57.3 N/A N/A N/A	N/A N/A N/A N/A	N/A N/A
Roller N/A N/A	N/A	63. 1 56. 1 N/A N/A N/A	N/A N/A N/A N/A	N/A N/A
Roller N/A N/A	N/A	63. 1 56. 1 N/A N/A N/A	N/A N/A N/A N/A	N/A N/A
N/A N/A	Total N/A	68.1 68.9 N/A N/A N/A	N/A N/A N/A N/A	N/A N/A

Architectural Coating_20180611 Roadway Construction Noise Model (RCNM), Version 1.1

Report date: Case Description:

06/11/2018 AVCCD 2016 FMP - Architectural Coating Phase

**** Receptor #1 ****

Description Single-Family Residential	Land Use Resi dent		baytime Daytime 65.0	(dBA) Eveni ng 65. 0	Ni ght 45. 0								
Equipment													
Fatimated			Spec	Actual	Receptor								
Estimated	Impact	Usage	Lmax	Lmax	Di stance								
Shi el di ng Descri pti on 	Devi ce	(%)	(dBA)	(dBA)	(feet)	(dBA)							
Compressor (air) 0.0	No	40		77.7	50. 0								

Resul ts

Noise Limits (dBA)

		No	ise Limit Ex	ceedance	(dBA)		NOISE LIII	its (u	
Ni ght	ht Day		Cal cul ated (dBA) Day Eveni ng)ay it	Eveni ng		
Equipme Lmax	ent Leq	Lmax	Lmax Leq Lma			Leq Leq	Lmax	Leq	
Compres	ssor (air) N/A	 N/A	77. 7 N/A N/A		 N/A N/A		N/A	N/A	
N/A		Total N/A	77.7 N/A N/A	73.7	N/A	N/A	N/A	N/A	
			* * * *	Receptor	#2 ****				
Descri p	otion		Land Use	Bas e [selines (Daytime	(dBA) Eveni ng	Ni ght		
Si ngl e-	Family Res	si denti al	Resi dent	i al	65.0	65.0	45.0		
				Equi pment	t				
Estimat	-od				Spec	Actual	Receptor		
			Impact	Usage	Lmax	Lmax	Di stance		
Shi el di Descri p			Devi ce	(%)	(dBA)	(dBA)	(feet)	(
Compres 0.0	ssor (air)		No	40		77.7	100. 0		
				D					

Page 1

Architectural Coating_20180611

Resul ts

	No	ise I	_imit E×	ceedance	(dBA)		Noise Lim	its (dBA)
Ni ght	Day			ed (dBA) ni ng	E Nigh	Day nt	Eveni n	g
Equipment Lmax Leq	Lmax		Lmax	Leq ix Leq	Lmax Lmax		 Lmax	Leq
Compressor (air) N/A N/A N/A N/A	N/A Total N/A	N/A N/A	71.6	N/A 67.7	N/A N/A N/A N/A N/A	N/A	N/A N/A	N/A N/A
			* * * *	Receptor	#3 ****			
Description	Land	Use		Bas Daytime	elines (Evenir	ng Nigh	nt	
Church and School	Comm	erci a	al	65.0	65.		0	
				Equi pment				
Estimated					Spec	Actual	Receptor	
Shi el di ng			Impact	Usage	Lmax	Lmax	Di stance	
Description			Devi ce	(%)	(dBA)	(dBA)	(feet)	(dBA)
Compressor (air) 0.0			No	40		77.7	165.0	
	No	ise I		Results	(dBA)		Noise Lim	its (dBA)
Night	Day	са Са	al cul ate Ever	ed (dBA) ni ng	E Nigh		Eveni n	g
Equipment Lmax Leq	Lmax	Leq	Lmax Lmax		Lmax Lmax		 Lmax	Leq
Compressor (air)			67.3	63.3	N/A	N/A	 N/A	N/A
N/A N/A N/A N/A	N/A Total N/A	N/A N/A	67.3	63.3 N/A	N/A N/A N/A	N/A N/A N/A	N/A	N/A
	147 / 1			Receptor				

Page 2

Architectural Coating_20180611

Description Church	Land Use Commercial	Daytime 65.0	e Eve	asel i nes eni ng 65. 0	(dBA) Ni ght 45.0								
Equipment													
				Spec	Actual	Receptor							
Estimated		Impact	Usage	Lmax	Lmax	Distance							
Shi el di ng Descri pti on		Devi ce	(%)	(dBA)	(dBA)	(feet)	(dBA)						
Compressor (a 0.0	ir)	No	40		77.7	350.0							

Results

Noise Limits (dBA)

Night Day		Day	Cal cul ated (dBA) Eveni ng	Day Ni ght	Eveni ng
Equipme Lmax	nt Leq	Lmax	Lmax Leq Leq Lmax Leq	Lmax Leq Lmax Leq	Lmax Leq
Compres N/A	sor (air) N/A	N/A	60. 8 56. 8 N/A N/A N/A	N/A N/A N/A N/A	N/A N/A
N/A	N/A	Total N/A	60.8 56.8 N/A N/A N/A	N/A N/A N/A N/A	N/A N/A

Noise Limit Exceedance (dBA)

Appendix G

United States Department of Housing and Urban Development (HUD) Day/Night Noise Level (DNL) Modeling Results

Noise Measurement Location 1

Home (/) > Programs (/programs/) > Environmental Review (/programs/environmentalreview/) > DNL Calculator

DNL Calculator

WARNING: HUD recommends the use of Microsoft Internet Explorer for performing noise calculations. The HUD Noise Calculator has an error when using Google Chrome unless the cache is cleared before each use of the calculator. HUD is aware of the problem and working to fix it in the programming of the calculator.

The Day/Night Noise Level Calculator is an electronic assessment tool that calculates the Day/Night Noise Level (DNL) from roadway and railway traffic. For more information on using the DNL calculator, view the **Day/Night Noise Level Calculator Electronic Assessment Tool Overview** (/programs/environmental-review/daynight-noise-level-electronic-assessment-tool/).

Guidelines

- To display the Road and/or Rail DNL calculator(s), click on the "Add Road Source" and/or "Add Rail Source" button(s) below.
- All Road and Rail input values must be positive non-decimal numbers.
- All Road and/or Rail DNL value(s) must be calculated separately before calculating the Site DNL.
- All checkboxes that apply must be checked for vehicles and trains in the tables' headers.
- **Note #1:** Tooltips, containing field specific information, have been added in this tool and may be accessed by hovering over all the respective data fields (site identification, roadway and railway assessment, DNL calculation results, roadway and railway input variables) with the mouse.
- Note #2: DNL Calculator assumes roadway data is always entered.

DNL Calculator

Site ID	AVCCD Noise Measurement Location 1 - Existing
Record Date	6/27/18
User's Name	Rincon Consultants, Inc.

Road # 1 Name:	W Avenue K	

Road #1

Vehicle Type	Cars 🗹	Medium Trucks 🗹	Heavy Trucks 🗹
Effective Distance	57	57	57
Distance to Stop Sign	316	316	316
Average Speed	50	50	50
Average Daily Trips (ADT)	18363	580	387
Night Fraction of ADT	15	15	15
Road Gradient (%)			2
Vehicle DNL	66.7805	71.7754	72.3166
Calculate Road #1 DNL	75.6468	Reset	

Add Road Source	Add Rail Source	
Airport Noise Level		
Loud Impulse Soun	ds?	◯Yes ◯No

Combined DNL for all Road and Rail sources	75.6468
Combined DNL including Airport	N/A
Site DNL with Loud Impulse Sound	

Mitigation Options

If your site DNL is in Excess of 65 decibels, your options are:

- No Action Alternative: Cancel the project at this location
- Other Reasonable Alternatives: Choose an alternate site
- Mitigation

Calculate

- Contact your Field or Regional Environmental Officer (/programs/environmentalreview/hud-environmental-staff-contacts/)
- Increase mitigation in the building walls (only effective if no outdoor, noise sensitive areas)
- Reconfigure the site plan to increase the distance between the noise source and noise-sensitive uses
- Incorporate natural or man-made barriers. See *The Noise Guidebook* (/resource/313/hud-noise-guidebook/)
- Construct noise barrier. See the Barrier Performance Module (/programs/environmental-review/bpm-calculator/)

Tools and Guidance

Day/Night Noise Level Assessment Tool User Guide (/resource/3822/day-night-noise-levelassessment-tool-user-guide/)

Day/Night Noise Level Assessment Tool Flowcharts (/resource/3823/day-night-noise-levelassessment-tool-flowcharts/) Home (/) > Programs (/programs/) > Environmental Review (/programs/environmentalreview/) > DNL Calculator

DNL Calculator

WARNING: HUD recommends the use of Microsoft Internet Explorer for performing noise calculations. The HUD Noise Calculator has an error when using Google Chrome unless the cache is cleared before each use of the calculator. HUD is aware of the problem and working to fix it in the programming of the calculator.

The Day/Night Noise Level Calculator is an electronic assessment tool that calculates the Day/Night Noise Level (DNL) from roadway and railway traffic. For more information on using the DNL calculator, view the **Day/Night Noise Level Calculator Electronic Assessment Tool Overview** (/programs/environmental-review/daynight-noise-level-electronic-assessment-tool/).

Guidelines

- To display the Road and/or Rail DNL calculator(s), click on the "Add Road Source" and/or "Add Rail Source" button(s) below.
- All Road and Rail input values must be positive non-decimal numbers.
- All Road and/or Rail DNL value(s) must be calculated separately before calculating the Site DNL.
- All checkboxes that apply must be checked for vehicles and trains in the tables' headers.
- **Note #1:** Tooltips, containing field specific information, have been added in this tool and may be accessed by hovering over all the respective data fields (site identification, roadway and railway assessment, DNL calculation results, roadway and railway input variables) with the mouse.
- Note #2: DNL Calculator assumes roadway data is always entered.

DNL Calculator

LCD NOISE MEASULEMENT LOCATION Z & 5 - EXISTING	AVCCD Noise Measurement Location 2 & 5 - Existing
---	---

Record Date	6/27/18
User's Name	Rincon Consultants, Inc.

Road # 1 Name:	30th Street W	

Road #1

Site ID

Vehicle Type	Cars 🗹	Medium Trucks 🗹	Heavy Trucks 🗹
Effective Distance	59	59	59
Distance to Stop Sign			
Average Speed	50	50	50
Average Daily Trips (ADT)	16777	530	353
Night Fraction of ADT	15	15	15
Road Gradient (%)			2
Vehicle DNL	68.5744	63.5701	69.1399
Calculate Road #1 DNL	72.4567	Reset	

Loud Impulse Sounds?	⊖Yes ⊖No
Airport Noise Level	
Add Road Source Add Rail Source	

Combined DNL for all Road and Rail sources	72.4567
Combined DNL including Airport	N/A
Site DNL with Loud Impulse Sound	

Mitigation Options

If your site DNL is in Excess of 65 decibels, your options are:

- No Action Alternative: Cancel the project at this location
- Other Reasonable Alternatives: Choose an alternate site
- Mitigation

Calculate

- Contact your Field or Regional Environmental Officer (/programs/environmentalreview/hud-environmental-staff-contacts/)
- Increase mitigation in the building walls (only effective if no outdoor, noise sensitive areas)
- Reconfigure the site plan to increase the distance between the noise source and noise-sensitive uses
- Incorporate natural or man-made barriers. See *The Noise Guidebook* (/resource/313/hud-noise-guidebook/)
- Construct noise barrier. See the Barrier Performance Module (/programs/environmental-review/bpm-calculator/)

Tools and Guidance

Day/Night Noise Level Assessment Tool User Guide (/resource/3822/day-night-noise-levelassessment-tool-user-guide/)

Day/Night Noise Level Assessment Tool Flowcharts (/resource/3823/day-night-noise-levelassessment-tool-flowcharts/) Home (/) > Programs (/programs/) > Environmental Review (/programs/environmentalreview/) > DNL Calculator

Noise Measurement Location 3

DNL Calculator

WARNING: HUD recommends the use of Microsoft Internet Explorer for performing noise calculations. The HUD Noise Calculator has an error when using Google Chrome unless the cache is cleared before each use of the calculator. HUD is aware of the problem and working to fix it in the programming of the calculator.

The Day/Night Noise Level Calculator is an electronic assessment tool that calculates the Day/Night Noise Level (DNL) from roadway and railway traffic. For more information on using the DNL calculator, view the **Day/Night Noise Level Calculator Electronic Assessment Tool Overview** (/programs/environmental-review/daynight-noise-level-electronic-assessment-tool/).

Guidelines

- To display the Road and/or Rail DNL calculator(s), click on the "Add Road Source" and/or "Add Rail Source" button(s) below.
- All Road and Rail input values must be positive non-decimal numbers.
- All Road and/or Rail DNL value(s) must be calculated separately before calculating the Site DNL.
- All checkboxes that apply must be checked for vehicles and trains in the tables' headers.
- **Note #1:** Tooltips, containing field specific information, have been added in this tool and may be accessed by hovering over all the respective data fields (site identification, roadway and railway assessment, DNL calculation results, roadway and railway input variables) with the mouse.
- Note #2: DNL Calculator assumes roadway data is always entered.

DNL Calculator

Site ID	AVCCD Noise Measurement Location 3 - Existing	
Record Date	6/27/18	
User's Name	Rincon Consultants, Inc.	

Road # 1 Name:	W Avenue J 8	

Road #1

Vehicle Type	Cars 🗹	Medium Trucks 🗹	Heavy Trucks 🗹
Effective Distance	42	42	42
Distance to Stop Sign			
Average Speed	45	45	45
Average Daily Trips (ADT)	11476	362	242
Night Fraction of ADT	15	15	15
Road Gradient (%)			2
Vehicle DNL	68.2241	63.2133	69.7143
Calculate Road #1 DNL	72.5681	Reset	

Add Road Source	Add Rail Source
Airport Noise Level	
Loud Impulse Soun	ıds?

Combined DNL for all Road and Rail sources	72.5681
Combined DNL including Airport	N/A
Site DNL with Loud Impulse Sound	

Mitigation Options

If your site DNL is in Excess of 65 decibels, your options are:

- No Action Alternative: Cancel the project at this location
- Other Reasonable Alternatives: Choose an alternate site
- Mitigation

Calculate

- Contact your Field or Regional Environmental Officer (/programs/environmentalreview/hud-environmental-staff-contacts/)
- Increase mitigation in the building walls (only effective if no outdoor, noise sensitive areas)
- Reconfigure the site plan to increase the distance between the noise source and noise-sensitive uses
- Incorporate natural or man-made barriers. See *The Noise Guidebook* (/resource/313/hud-noise-guidebook/)
- Construct noise barrier. See the Barrier Performance Module (/programs/environmental-review/bpm-calculator/)

Tools and Guidance

Day/Night Noise Level Assessment Tool User Guide (/resource/3822/day-night-noise-levelassessment-tool-user-guide/)

Day/Night Noise Level Assessment Tool Flowcharts (/resource/3823/day-night-noise-levelassessment-tool-flowcharts/) Home (/) > Programs (/programs/) > Environmental Review (/programs/environmentalreview/) > DNL Calculator

Noise Measurement Location 6

DNL Calculator

WARNING: HUD recommends the use of Microsoft Internet Explorer for performing noise calculations. The HUD Noise Calculator has an error when using Google Chrome unless the cache is cleared before each use of the calculator. HUD is aware of the problem and working to fix it in the programming of the calculator.

The Day/Night Noise Level Calculator is an electronic assessment tool that calculates the Day/Night Noise Level (DNL) from roadway and railway traffic. For more information on using the DNL calculator, view the **Day/Night Noise Level Calculator Electronic Assessment Tool Overview** (/programs/environmental-review/daynight-noise-level-electronic-assessment-tool/).

Guidelines

- To display the Road and/or Rail DNL calculator(s), click on the "Add Road Source" and/or "Add Rail Source" button(s) below.
- All Road and Rail input values must be positive non-decimal numbers.
- All Road and/or Rail DNL value(s) must be calculated separately before calculating the Site DNL.
- All checkboxes that apply must be checked for vehicles and trains in the tables' headers.
- **Note #1:** Tooltips, containing field specific information, have been added in this tool and may be accessed by hovering over all the respective data fields (site identification, roadway and railway assessment, DNL calculation results, roadway and railway input variables) with the mouse.
- Note #2: DNL Calculator assumes roadway data is always entered.

DNL Calculator

Site ID	AVCCD Noise Measurement Location 6 - Existing	
Record Date	6/27/18	
User's Name	Rincon Consultants, Inc.	

Road # 1 Name:	35th Street W	

Road #1

Vehicle Type	Cars 🗹	Medium Trucks 🗹	Heavy Trucks 🗹
Effective Distance	588	588	588
Distance to Stop Sign			
Average Speed	40	40	40
Average Daily Trips (ADT)	1144	24	12
Night Fraction of ADT	15	15	15
Road Gradient (%)			2
Vehicle DNL	39.9955	33.2133	39.476
Calculate Road #1 DNL	43.1938	Reset	

Add Road Source	Add Rail Source
Airport Noise Level	
Loud Impulse Soun	ıds?

Combined DNL for all Road and Rail sources	43.1938
Combined DNL including Airport	N/A
Site DNL with Loud Impulse Sound	

Mitigation Options

If your site DNL is in Excess of 65 decibels, your options are:

- No Action Alternative: Cancel the project at this location
- Other Reasonable Alternatives: Choose an alternate site
- Mitigation

Calculate

- Contact your Field or Regional Environmental Officer (/programs/environmentalreview/hud-environmental-staff-contacts/)
- Increase mitigation in the building walls (only effective if no outdoor, noise sensitive areas)
- Reconfigure the site plan to increase the distance between the noise source and noise-sensitive uses
- Incorporate natural or man-made barriers. See *The Noise Guidebook* (/resource/313/hud-noise-guidebook/)
- Construct noise barrier. See the Barrier Performance Module (/programs/environmental-review/bpm-calculator/)

Tools and Guidance

Day/Night Noise Level Assessment Tool User Guide (/resource/3822/day-night-noise-levelassessment-tool-user-guide/)

Day/Night Noise Level Assessment Tool Flowcharts (/resource/3823/day-night-noise-levelassessment-tool-flowcharts/)

Noise Measurement Location 1

Home (/) > Programs (/programs/) > Environmental Review (/programs/environmentalreview/) > DNL Calculator

DNL Calculator

WARNING: HUD recommends the use of Microsoft Internet Explorer for performing noise calculations. The HUD Noise Calculator has an error when using Google Chrome unless the cache is cleared before each use of the calculator. HUD is aware of the problem and working to fix it in the programming of the calculator.

The Day/Night Noise Level Calculator is an electronic assessment tool that calculates the Day/Night Noise Level (DNL) from roadway and railway traffic. For more information on using the DNL calculator, view the **Day/Night Noise Level Calculator Electronic Assessment Tool Overview** (/programs/environmental-review/daynight-noise-level-electronic-assessment-tool/).

Guidelines

- To display the Road and/or Rail DNL calculator(s), click on the "Add Road Source" and/or "Add Rail Source" button(s) below.
- All Road and Rail input values must be positive non-decimal numbers.
- All Road and/or Rail DNL value(s) must be calculated separately before calculating the Site DNL.
- All checkboxes that apply must be checked for vehicles and trains in the tables' headers.
- Note #1: Tooltips, containing field specific information, have been added in this tool and may be accessed by hovering over all the respective data fields (site identification, roadway and railway assessment, DNL calculation results, roadway and railway input variables) with the mouse.
- Note #2: DNL Calculator assumes roadway data is always entered.

DNL Calculator

Site ID	AVCCD Noise Measurement Location 1 - Existing plus Project	
Record Date	6/27/18	
User's Name	Rincon Consultants, Inc.	

Road # 1 Name:	W Avenue K	

Road #1

Vehicle Type	Cars 🗹	Medium Trucks 🗹	Heavy Trucks 🗹
Effective Distance	57	57	57
Distance to Stop Sign	316	316	316
Average Speed	50	50	50
Average Daily Trips (ADT)	19437	614	409
Night Fraction of ADT	15	15	15
Road Gradient (%)			2
Vehicle DNL	67.0274	72.0228	72.5567
Calculate Road #1 DNL	75.8904	Reset	

Add Road Source	Add Rail Source	
Airport Noise Level		
Loud Impulse Soun	ds?	◯Yes ◯No

https://www.hudexchange.info/environmental-review/dnl-calculator/

Combined DNL for all Road and Rail sources	75.8904
Combined DNL including Airport	N/A
Site DNL with Loud Impulse Sound	

Calculate

Mitigation Options

If your site DNL is in Excess of 65 decibels, your options are:

- No Action Alternative: Cancel the project at this location
- Other Reasonable Alternatives: Choose an alternate site
- Mitigation
 - Contact your Field or Regional Environmental Officer (/programs/environmentalreview/hud-environmental-staff-contacts/)
 - Increase mitigation in the building walls (only effective if no outdoor, noise sensitive areas)
 - Reconfigure the site plan to increase the distance between the noise source and noise-sensitive uses
 - Incorporate natural or man-made barriers. See *The Noise Guidebook* (/resource/313/hud-noise-guidebook/)
 - Construct noise barrier. See the Barrier Performance Module (/programs/environmental-review/bpm-calculator/)

Tools and Guidance

Day/Night Noise Level Assessment Tool User Guide (/resource/3822/day-night-noise-levelassessment-tool-user-guide/)

Day/Night Noise Level Assessment Tool Flowcharts (/resource/3823/day-night-noise-levelassessment-tool-flowcharts/)

Noise Measurement Locations 2 and 5

Home (/) > Programs (/programs/) > Environmental Review (/programs/environmentalreview/) > DNL Calculator

DNL Calculator

WARNING: HUD recommends the use of Microsoft Internet Explorer for performing noise calculations. The HUD Noise Calculator has an error when using Google Chrome unless the cache is cleared before each use of the calculator. HUD is aware of the problem and working to fix it in the programming of the calculator.

The Day/Night Noise Level Calculator is an electronic assessment tool that calculates the Day/Night Noise Level (DNL) from roadway and railway traffic. For more information on using the DNL calculator, view the **Day/Night Noise Level Calculator Electronic Assessment Tool Overview** (/programs/environmental-review/daynight-noise-level-electronic-assessment-tool/).

Guidelines

- To display the Road and/or Rail DNL calculator(s), click on the "Add Road Source" and/or "Add Rail Source" button(s) below.
- All Road and Rail input values must be positive non-decimal numbers.
- All Road and/or Rail DNL value(s) must be calculated separately before calculating the Site DNL.
- All checkboxes that apply must be checked for vehicles and trains in the tables' headers.
- **Note #1:** Tooltips, containing field specific information, have been added in this tool and may be accessed by hovering over all the respective data fields (site identification, roadway and railway assessment, DNL calculation results, roadway and railway input variables) with the mouse.
- Note #2: DNL Calculator assumes roadway data is always entered.

DNL Calculator

Site ID	AVCCD Noise Measurement Location 2 & 5 - Existing plus Project
Record Date	6/27/18
User's Name	Rincon Consultants, Inc.

Road # 1 Name:	30th Street W	

Road #1

Vehicle Type	Cars 🗹	Medium Trucks 🗹	Heavy Trucks 🗹
Effective Distance	59	59	59
Distance to Stop Sign			
Average Speed	50	50	50
Average Daily Trips (ADT)	18240	576	384
Night Fraction of ADT	15	15	15
Road Gradient (%)			2
Vehicle DNL	68.9375	63.9315	69.5054
Calculate Road #1 DNL	72.8209	Reset	

Add Road Source	Add Rail Source	
Airport Noise Level		
Loud Impulse Soun	ds?	◯Yes ◯No

Combined DNL for all Road and Rail sources	72.8209	
Combined DNL including Airport	N/A	
Site DNL with Loud Impulse Sound		
	N/A	

Calculate

Mitigation Options

If your site DNL is in Excess of 65 decibels, your options are:

- No Action Alternative: Cancel the project at this location
- Other Reasonable Alternatives: Choose an alternate site
- Mitigation
 - Contact your Field or Regional Environmental Officer (/programs/environmentalreview/hud-environmental-staff-contacts/)
 - Increase mitigation in the building walls (only effective if no outdoor, noise sensitive areas)
 - Reconfigure the site plan to increase the distance between the noise source and noise-sensitive uses
 - Incorporate natural or man-made barriers. See *The Noise Guidebook* (/resource/313/hud-noise-guidebook/)
 - Construct noise barrier. See the Barrier Performance Module (/programs/environmental-review/bpm-calculator/)

Tools and Guidance

Day/Night Noise Level Assessment Tool User Guide (/resource/3822/day-night-noise-levelassessment-tool-user-guide/)

Day/Night Noise Level Assessment Tool Flowcharts (/resource/3823/day-night-noise-levelassessment-tool-flowcharts/)

Noise Measurement Location 3

Home (/) > Programs (/programs/) > Environmental Review (/programs/environmentalreview/) > DNL Calculator

DNL Calculator

WARNING: HUD recommends the use of Microsoft Internet Explorer for performing noise calculations. The HUD Noise Calculator has an error when using Google Chrome unless the cache is cleared before each use of the calculator. HUD is aware of the problem and working to fix it in the programming of the calculator.

The Day/Night Noise Level Calculator is an electronic assessment tool that calculates the Day/Night Noise Level (DNL) from roadway and railway traffic. For more information on using the DNL calculator, view the **Day/Night Noise Level Calculator Electronic Assessment Tool Overview** (/programs/environmental-review/daynight-noise-level-electronic-assessment-tool/).

Guidelines

- To display the Road and/or Rail DNL calculator(s), click on the "Add Road Source" and/or "Add Rail Source" button(s) below.
- All Road and Rail input values must be positive non-decimal numbers.
- All Road and/or Rail DNL value(s) must be calculated separately before calculating the Site DNL.
- All checkboxes that apply must be checked for vehicles and trains in the tables' headers.
- Note #1: Tooltips, containing field specific information, have been added in this tool and may be accessed by hovering over all the respective data fields (site identification, roadway and railway assessment, DNL calculation results, roadway and railway input variables) with the mouse.
- Note #2: DNL Calculator assumes roadway data is always entered.

DNL Calculator

Site ID	AVCCD Noise Measurement Location 3 - Existing plus Project
Record Date	6/27/18
User's Name	Rincon Consultants, Inc.

Road # 1 Name:	W Avenue J 8	

Road #1

Vehicle Type	Cars 🗹	Medium Trucks 🗹	Heavy Trucks 🗹
Effective Distance	42	42	42
Distance to Stop Sign			
Average Speed	45	45	45
Average Daily Trips (ADT)	11885	375	250
Night Fraction of ADT	15	15	15
Road Gradient (%)			2
Vehicle DNL	68.3762	63.3665	69.8556
Calculate Road #1 DNL	72.7149	Reset	

Add Road Source	Add Rail Source	
Airport Noise Level		
Loud Impulse Soun	ds?	◯Yes ◯No

Combined DNL for all Road and Rail sources	72.7149
Combined DNL including Airport	N/A
Site DNL with Loud Impulse Sound	

Calculate

Mitigation Options

If your site DNL is in Excess of 65 decibels, your options are:

- No Action Alternative: Cancel the project at this location
- Other Reasonable Alternatives: Choose an alternate site
- Mitigation
 - Contact your Field or Regional Environmental Officer (/programs/environmentalreview/hud-environmental-staff-contacts/)
 - Increase mitigation in the building walls (only effective if no outdoor, noise sensitive areas)
 - Reconfigure the site plan to increase the distance between the noise source and noise-sensitive uses
 - Incorporate natural or man-made barriers. See *The Noise Guidebook* (/resource/313/hud-noise-guidebook/)
 - Construct noise barrier. See the Barrier Performance Module (/programs/environmental-review/bpm-calculator/)

Tools and Guidance

Day/Night Noise Level Assessment Tool User Guide (/resource/3822/day-night-noise-levelassessment-tool-user-guide/)

Day/Night Noise Level Assessment Tool Flowcharts (/resource/3823/day-night-noise-levelassessment-tool-flowcharts/) Home (/) > Programs (/programs/) > Environmental Review (/programs/environmentalreview/) > DNL Calculator

DNL Calculator

WARNING: HUD recommends the use of Microsoft Internet Explorer for performing noise calculations. The HUD Noise Calculator has an error when using Google Chrome unless the cache is cleared before each use of the calculator. HUD is aware of the problem and working to fix it in the programming of the calculator.

The Day/Night Noise Level Calculator is an electronic assessment tool that calculates the Day/Night Noise Level (DNL) from roadway and railway traffic. For more information on using the DNL calculator, view the **Day/Night Noise Level Calculator Electronic Assessment Tool Overview** (/programs/environmental-review/daynight-noise-level-electronic-assessment-tool/).

Guidelines

- To display the Road and/or Rail DNL calculator(s), click on the "Add Road Source" and/or "Add Rail Source" button(s) below.
- All Road and Rail input values must be positive non-decimal numbers.
- All Road and/or Rail DNL value(s) must be calculated separately before calculating the Site DNL.
- All checkboxes that apply must be checked for vehicles and trains in the tables' headers.
- **Note #1:** Tooltips, containing field specific information, have been added in this tool and may be accessed by hovering over all the respective data fields (site identification, roadway and railway assessment, DNL calculation results, roadway and railway input variables) with the mouse.
- Note #2: DNL Calculator assumes roadway data is always entered.

DNL Calculator

Site ID	AVCCD Noise Measurement Location 6 - Existing plus Project			
Record Date	6/27/18			
User's Name	Rincon Consultants, Inc.			

Road # 1 Name:	35th Street W	

Road #1

Vehicle Type	Cars 🗹	Medium Trucks 🗹	Heavy Trucks 🗹
Effective Distance	588	588	588
Distance to Stop Sign			
Average Speed	40	40	40
Average Daily Trips (ADT)	1144	24	12
Night Fraction of ADT	15	15	15
Road Gradient (%)			2
Vehicle DNL	39.9955	33.2133	39.476
Calculate Road #1 DNL	43.1938	Reset	

Add Road Source	Add Rail Source	
Airport Noise Level		
Loud Impulse Soun	ds?	◯Yes ◯No

https://www.hudexchange.info/environmental-review/dnl-calculator/

Combined DNL for all Road and Rail sources	43.1938
Combined DNL including Airport	N/A
Site DNL with Loud Impulse Sound	

Mitigation Options

If your site DNL is in Excess of 65 decibels, your options are:

- No Action Alternative: Cancel the project at this location
- Other Reasonable Alternatives: Choose an alternate site
- Mitigation

Calculate

- Contact your Field or Regional Environmental Officer (/programs/environmentalreview/hud-environmental-staff-contacts/)
- Increase mitigation in the building walls (only effective if no outdoor, noise sensitive areas)
- Reconfigure the site plan to increase the distance between the noise source and noise-sensitive uses
- Incorporate natural or man-made barriers. See *The Noise Guidebook* (/resource/313/hud-noise-guidebook/)
- Construct noise barrier. See the Barrier Performance Module (/programs/environmental-review/bpm-calculator/)

Tools and Guidance

Day/Night Noise Level Assessment Tool User Guide (/resource/3822/day-night-noise-levelassessment-tool-user-guide/)

Day/Night Noise Level Assessment Tool Flowcharts (/resource/3823/day-night-noise-levelassessment-tool-flowcharts/)

Appendix H

Individual Construction Equipment Average Noise Levels

Equipment Description	Impact Device?	Acoustical Usage Factor (%)	Spec. 721.560 L _{max} @ 50 feet (dBA, slow) ¹	Actual Measured L _{max} @ 50 feet (dBA, slow) (Samples Averaged)	Number of Actual Data Samples (Count)
All Other Equipment > 5 HP	No	50	85	N/A	0
Auger Drill Rig	No	20	85	84	36
Backhoe	No	40	80	78	372
Bar Bender	No	20	80	N/A	0
Blasting	Yes	N/A	94	N/A	0
Boring Jack Power Unit	No	50	80	83	1
Chain Saw	No	20	85	84	46
Clam Shovel (dropping)	Yes	20	93	87	4
Compactor (ground)	No	20	80	83	57
Compressor (air)	No	40	80	78	18
Concrete Batch Plant	No	15	83	N/A	0
Concrete Mixer Truck	No	40	85	79	40
Concrete Pump Truck	No	20	82	81	30
Concrete Saw	No	20	90	90	55
Crane	No	16	85	81	405
Dozer	No	40	85	82	55
Drill Rig Truck	No	20	84	79	22
Drum Mixer	No	50	80	80	1
Dump Truck	No	40	84	76	31
Excavator	No	40	85	81	170
Flat Bed Truck	No	40	84	74	4
Front End Loader	No	40	80	79	96

Table 9.1 RCNM Default Noise Emission Reference Levels and Usage Factors

Generator	No	50	82	81	19
Generator (<25KVA, VMS Signs)	No	50	70	73	74
Gradall	No	40	85	83	70
Grader	No	40	85	N/A	0
Grapple (on backhoe)	No	40	85	87	1
Horizontal Boring Hydraulic Jack	No	25	80	82	6
Hydra Break Ram	Yes	10	90	N/A	0
Impact Pile Driver	Yes	20	95	101	11
Jackhammer	Yes	20	85	89	133
Man Lift	No	20	85	75	23
Mounted Impact Hammer (hoe ram)	Yes	20	90	90	212
Pavement Scarifier	No	20	85	90	2
Paver	No	50	85	77	9
Pickup Truck	No	40	55	75	1
Pneumatic Tools	No	50	85	85	90
Pumps	No	50	77	81	17
Refrigerator Unit	No	100	82	73	3
Rivit Buster/Chipping Gun	Yes	20	85	79	19
Rock Drill	No	20	85	81	3
Roller	No	20	85	80	16
Sand Blasting (single nozzle)	No	20	85	96	9
Scraper	No	40	85	84	12
Sheers (on backhoe)	No	40	85	96	5
Slurry Plant	No	100	78	78	1
Slurry Trenching	No	50	82	80	75

Machine					
Soil Mix Drill Rig	No	50	80	N/A	0
Tractor	No	40	84	N/A	0
Vacuum Excavator (Vac-Truck)	No	40	85	85	149
Vacuum Street Sweeper	No	10	80	82	19
Ventilation Fan	No	100	85	79	13
Vibrating Hopper	No	50	85	87	1
Vibratory Concrete Mixer	No	20	80	80	1
Vibratory Pile Driver	No	20	95	101	44
Warning Horn	No	5	85	83	12
Welder/Torch	No	40	73	74	5

 $^{1}\,\mathrm{At}$ a reference distance of 50 foot from the loudest side of the equipment

Source: Federal Highway Administration. 2006. *Construction Noise Handbook*. August 2006. <u>https://www.fhwa.dot.gov/ENVIRonment/noise/construction_noise/handbook/handbook09.cfm</u>

Appendix I

Native American Heritage Commission (NAHC) Tribal Consultation List and Notification Letters

Local Government Tribal Consultation List Request Native American Heritage Commission 1550 Harbor Blvd, Suite 100 West Sacramento, CA 95691 916-373-3710 916-373-5471 – Fax nahc@nahc.ca.gov

Type of List Requested

■CEQA Tribal Consultation List (AB 52) – Per Public Resources Code § 21080.3.1, subs. (b), (d), (e) and 21080.3.2

□ General Plan (SB 18) - Per Government Code § 65352.3. Local Action Type: ____ General Plan ___ General Plan Element ___ General Plan Amendment

____ Specific Plan ____ Specific Plan Amendment ____ Pre-planning Outreach Activity

Required Information

Project Title: Antelope Valley Community College District 2016 Facilities Master Plan

Local Government/Lead Agency: Antelope Valley Community College District

Contact Person: Doug Jensen, Executive Director, Facilities Services Department

Street Address: 3041 West Avenue K

City: Lancaster Zip: 93536

Phone: (661) 722-6300

Email: djensen@avc.edu

Specific Area Subject to Proposed Action

County: Los Angeles City/Community: Lancaster

Project Description: The proposed project is an update of the Antelope Valley Community College District Facilities Master Plan (2016 FMP). The 2016 FMP is a guide for the future development of the District's Lancaster campus, also known as Antelope Valley College.

Additional Request

Sacred Lands File Search - Required Information:

USGS Quadrangle Name(s):____

Township:_____ Range:_____ Section(s):_____

NATIVE AMERICAN HERITAGE COMMISSION

Environmental and Cultural Department 1550 Harbor Blvd., Suite 100 West Sacramento, CA 95691 (916) 373-3710

March 30, 2018

Doug Jensen Antelope Valley Community College District

Sent via e-mail: djensen@avc.edu Cc: mszromba@rinconconsultants.com

RE: Proposed Antelope Valley Community College District 2016 Facilities Master Plan Project, City of Lancaster; Los Angeles County, California

Dear Mr. Jensen:

Attached is a consultation list of tribes with traditional lands or cultural places located within the boundaries of the above referenced counties. Please note that the intent of the reference codes below is to avoid or mitigate impacts to tribal cultural resources, as defined, for California Environmental Quality Act (CEQA) projects under AB-52.

As of July 1, 2015, Public Resources Code Sections 21080.3.1 and 21080.3.2 **require public agencies** to consult with California Native American tribes identified by the Native American Heritage Commission (NAHC) for the purpose mitigating impacts to tribal cultural resources:

Within 14 days of determining that an application for a project is complete or a decision by a public agency to undertake a project, the lead agency shall provide formal notification to the designated contact of, or a tribal representative of, traditionally and culturally affiliated California Native American tribes that have requested notice, which shall be accomplished by means of at least one written notification that includes a brief description of the proposed project and its location, the lead agency contact information, and a notification that the California Native American tribe has 30 days to request consultation pursuant to this section. (Public Resources Code Section 21080.3.1(d))

The law does not preclude agencies from initiating consultation with the tribes that are culturally and traditionally affiliated with their jurisdictions. The NAHC believes that in fact that this is the best practice to ensure that tribes are consulted commensurate with the intent of the law.

In accordance with Public Resources Code Section 21080.3.1(d), formal notification must include a brief description of the proposed project and its location, the lead agency contact information, and a notification that the California Native American tribe has 30 days to request consultation. The NAHC believes that agencies should also include with their notification letters information regarding any cultural resources assessment that has been completed on the APE, such as:

- 1. The results of any record search that may have been conducted at an Information Center of the California Historical Resources Information System (CHRIS), including, but not limited to:
 - A listing of any and all known cultural resources have already been recorded on or adjacent to the APE;
 - Copies of any and all cultural resource records and study reports that may have been provided by the Information Center as part of the records search response;
 - If the probability is low, moderate, or high that cultural resources are located in the APE.
 - Whether the records search indicates a low, moderate or high probability that unrecorded cultural resources are located in the potential APE; and

- If a survey is recommended by the Information Center to determine whether previously unrecorded cultural resources are present.
- 2. The results of any archaeological inventory survey that was conducted, including:
 - Any report that may contain site forms, site significance, and suggested mitigation measurers.

All information regarding site locations, Native American human remains, and associated funerary objects should be in a separate confidential addendum, and not be made available for pubic disclosure in accordance with Government Code Section 6254.10.

- 3. The results of any Sacred Lands File (SFL) check conducted through Native American Heritage Commission. The request form can be found at <u>http://nahc.ca.gov/wp-content/uploads/2015/04/Sacred-Lands-File-NA-Contact-Form.pdf.</u>
- 4. Any ethnographic studies conducted for any area including all or part of the potential APE; and
- 5. Any geotechnical reports regarding all or part of the potential APE.

Lead agencies should be aware that records maintained by the NAHC and CHRIS is not exhaustive, and a negative response to these searches does not preclude the existence of a cultural place. A tribe may be the only source of information regarding the existence of a tribal cultural resource.

This information will aid tribes in determining whether to request formal consultation. In the case that they do, having the information beforehand well help to facilitate the consultation process.

If you receive notification of change of addresses and phone numbers from tribes, please notify me. With your assistance we are able to assure that our consultation list contains current information.

If you have any questions, please contact me at my email address: gayle.totton@nahc.ca.gov.

Sincerely,

Jayle Totton

Gayle Totton, M.A., PhD. Associate Governmental Program Analyst

Native American Heritage Commission Tribal Consultation List Los Angeles County 3/29/2018

Fernandeno Tataviam Band of Mission Indians

Jairo Avila, Tribal Historic and Cultural Preservation Officer 1019 Second Street, Suite 1 San Fernando, CA, 91340 Phone: (818) 837 - 0794 Fax: (818) 837-0796 jairo.avila@tataviam-nsn.us

Fernandeno Tataviam Band of Mission Indians

Rudy Ortega, Tribal President 1019 Second Street, Suite 1 Tataviam San Fernando, CA, 91340 Phone: (818) 837 - 0794 Fax: (818) 837-0796 rortega@tataviam-nsn.us

Morongo Band of Mission Indians

Robert Martin, Chairperson12700 Pumarra RroadCahuillaBanning, CA, 92220SerranoPhone: (951) 849 - 8807SerranoFax: (951) 922-8146dtorres@morongo-nsn.gov

San Fernando Band of Mission Indians

Donna Yocum, Chairperson P.O. Box 221838 Newhall, CA, 91322 Phone: (503) 539 - 0933 Fax: (503) 574-3308 ddyocum@comcast.net

San Manuel Band of Mission Indians

Lee Clauss, Director of Cultural Resources 26569 Community Center Drive Serrano Highland, CA, 92346 Phone: (909) 864 - 8933 Fax: (909) 864-3370 Iclauss@sanmanuel-nsn.gov Lynn Valbuena, Chairwoman 26569 Community Center Drive Serrano Highland, CA, 92346 Phone: (909) 864 - 8933 jcoin@sanmanuel-nsn.gov

Serrano Nation of Mission Indians

Goldie Walker, Chairperson P.O. Box 343 Patton, CA, 92369 Phone: (909) 528 - 9027

Serrano

This list is only applicable for consultation with Native American tribes under Public Resources Code Sections 21080.3.1 for the proposed Antelope Valley Community College District 2016 Facilities Master Plan Project, Los Angeles County.

This list is current only as of the date of this document. Distribution of this list does not relieve any person of statutory responsibility as defined in Section 7050.5 of the Health and Safety Code, Section 5097.94 of the Public Resources Code and Section 6097.98 of the Public Resources Code and section 5097.98 of the Public Resources Code.

AB 52 Correspondence Tracking Table: Antelope Valley Community College District 2016 Facilities Master Plan Project

Contact List	Date Letter Sent to	Date of	
Received from NAHC on March 29, 2018	Contact	Response	Comments/Concerns
Fernandeno Tataviam Band of Mission Indians Rudy Ortega, Tribal President 1019 Second Street, Suite 1 San Fernando, California 91340 (818) 837-0794 <u>rortega@tataviam.nsn.us</u> Additional contact: Jairo Avila, Tribal Historic and Cultural Preservation Officer, jairo.avila@tataviam-nsn.us	April 12, 2018		
Morongo Band of Mission Indians Robert Martin, Chairperson 12700 Pumarra Road Banning, California 92220 (951) 849-8807 <u>dtorres@morongo-nsn.gov</u>	April 12, 2018		
San Fernando Band of Mission Indians Donna Yocum, Chairperson P.O. Box 221838 Newhall, California 91322 (503) 539-0933 <u>ddyocum@comcast.net</u>	April 12, 2018		
San Manuel Band of Mission Indians Lynn Valbuena, Chairwoman 26569 Community Center Drive Highland, California 92346 (909) 864-8933 <u>icoin@sanmanuel.nsn.gov</u> Additional contact: Lee Clauss, Director of Cultural Resources, <u>Iclauss@sanmanuel- nsn.gov</u>	April 12, 2018	May 15, 2018	Due to the nature and location of the proposed project, SMBMI does not have any concerns with the project's implementation, as planned, at this time. SMBMI requests that language be made a part of the project/permit/plan conditions addressing proper procedures in the event of discovery of human remains or funerary objects or Native American cultural resources. Lastly, SMBMI requests that they be provided with the final copy of the project/permit/plan conditions so that they may review the included language.

Contact List Received from NAHC on March 29, 2018	Date Letter Sent to Contact	Date of Response	Comments/Concerns
Serrano Nation of Mission Indians Goldie Walker, Chairperson P.O. Box 343	April 12, 2018		
Patton, California 92369 (909) 528-9027			

April 12, 2018

Morongo Band of Mission Indians Robert Martin, Chairperson 12700 Pumarra Road Banning, California 92220

RE: Assembly Bill 52 Consultation for the Antelope Valley Community College District 2016 Facilities Master Plan Project, City of Lancaster, Los Angeles County, California

Dear Chairperson Martin:

The Antelope Valley Community College District (AVCCD) is preparing an environmental impact report as part of an update to the AVCCD 2016 Facilities Master Plan (2016 FMP). The 2016 FMP is a guide for the future development of the Antelope Valley College's Lancaster campus to accommodate growth and change over the next 30 years, including recommendations for new construction, building renovation, change of use, and site development. These improvements would allow for an increase in full-time students at both the AVCCD's Lancaster campus and Palmdale Center.

The proposed project is subject to the California Environmental Quality Act and thus must comply with California Public Resources Code § 21080.3.1, or Assembly Bill 52 (AB 52; 2014), which requires local governments to conduct meaningful consultation with California Native American tribes that have requested to be notified about projects in the geographic area with which the tribe is traditionally and culturally affiliated.

The input of the Morongo Band of Mission Indians is important to the AVCCD's planning process. Under AB 52, you have 30 days from receipt of this letter to respond in writing if you wish you consult on the proposed project. If you require any additional information or have any questions, please contact me at (661) 722-6526 or via e-mail at djensen@avc.edu. Thank you for your assistance.

Sincerely,

Doug R. Jensen Executive Director Antelope Valley College, Facilities Services 3041 West Avenue K Lancaster, California 93536

Attached: Project Site Map

Imagery provided by Google and its licensors © 2018.

April 12, 2018

San Fernando Band of Mission Indians Donna Yocum, Chairperson P.O. Box 221838 Newhall, California 91322

RE: Assembly Bill 52 Consultation for the Antelope Valley Community College District 2016 Facilities Master Plan Project, City of Lancaster, Los Angeles County, California

Dear Chairperson Yocum:

The Antelope Valley Community College District (AVCCD) is preparing an environmental impact report as part of an update to the AVCCD 2016 Facilities Master Plan (2016 FMP). The 2016 FMP is a guide for the future development of the Antelope Valley College's Lancaster campus to accommodate growth and change over the next 30 years, including recommendations for new construction, building renovation, change of use, and site development. These improvements would allow for an increase in full-time students at both the AVCCD's Lancaster campus and Palmdale Center.

The proposed project is subject to the California Environmental Quality Act and thus must comply with California Public Resources Code § 21080.3.1, or Assembly Bill 52 (AB 52; 2014), which requires local governments to conduct meaningful consultation with California Native American tribes that have requested to be notified about projects in the geographic area with which the tribe is traditionally and culturally affiliated.

The input of the San Fernando Band of Mission Indians is important to the AVCCD's planning process. Under AB 52, you have 30 days from receipt of this letter to respond in writing if you wish you consult on the proposed project. If you require any additional information or have any questions, please contact me at (661) 722-6526 or via e-mail at djensen@avc.edu. Thank you for your assistance.

Sincerely,

Doug R. Jensen Executive Director Antelope Valley College, Facilities Services 3041 West Avenue K Lancaster, California 93536

Attached: Project Site Map

Imagery provided by Google and its licensors © 2018.

April 12, 2018

Serrano Nation of Mission Indians Goldie Walker, Chairperson P.O. Box 343 Patton, California 92369

RE: Assembly Bill 52 Consultation for the Antelope Valley Community College District 2016 Facilities Master Plan Project, City of Lancaster, Los Angeles County, California

Dear Chairperson Walker:

The Antelope Valley Community College District (AVCCD) is preparing an environmental impact report as part of an update to the AVCCD 2016 Facilities Master Plan (2016 FMP). The 2016 FMP is a guide for the future development of the Antelope Valley College's Lancaster campus to accommodate growth and change over the next 30 years, including recommendations for new construction, building renovation, change of use, and site development. These improvements would allow for an increase in full-time students at both the AVCCD's Lancaster campus and Palmdale Center.

The proposed project is subject to the California Environmental Quality Act and thus must comply with California Public Resources Code § 21080.3.1, or Assembly Bill 52 (AB 52; 2014), which requires local governments to conduct meaningful consultation with California Native American tribes that have requested to be notified about projects in the geographic area with which the tribe is traditionally and culturally affiliated.

The input of the Serrano Nation of Mission Indians is important to the AVCCD's planning process. Under AB 52, you have 30 days from receipt of this letter to respond in writing if you wish you consult on the proposed project. If you require any additional information or have any questions, please contact me at (661) 722-6526 or via e-mail at djensen@avc.edu. Thank you for your assistance.

Sincerely,

Doug R. Jensen Executive Director Antelope Valley College, Facilities Services 3041 West Avenue K Lancaster, California 93536

Attached: Project Site Map

Imagery provided by Google and its licensors © 2018.

April 12, 2018

San Manuel Band of Mission Indians Lynn Valbuena, Chairwoman 26569 Community Center Drive Highland, California 92346

RE: Assembly Bill 52 Consultation for the Antelope Valley Community College District 2016 Facilities Master Plan Project, City of Lancaster, Los Angeles County, California

Dear Chairwoman Valbuena:

The Antelope Valley Community College District (AVCCD) is preparing an environmental impact report as part of an update to the AVCCD 2016 Facilities Master Plan (2016 FMP). The 2016 FMP is a guide for the future development of the Antelope Valley College's Lancaster campus to accommodate growth and change over the next 30 years, including recommendations for new construction, building renovation, change of use, and site development. These improvements would allow for an increase in full-time students at both the AVCCD's Lancaster campus and Palmdale Center.

The proposed project is subject to the California Environmental Quality Act and thus must comply with California Public Resources Code § 21080.3.1, or Assembly Bill 52 (AB 52; 2014), which requires local governments to conduct meaningful consultation with California Native American tribes that have requested to be notified about projects in the geographic area with which the tribe is traditionally and culturally affiliated.


The input of the San Manuel Band of Mission Indians is important to the AVCCD's planning process. Under AB 52, you have 30 days from receipt of this letter to respond in writing if you wish you consult on the proposed project. If you require any additional information or have any questions, please contact me at (661) 722-6526 or via e-mail at djensen@avc.edu. Thank you for your assistance.

Sincerely,

Doug R. Jensen Executive Director Antelope Valley College, Facilities Services 3041 West Avenue K Lancaster, California 93536

Attached: Project Site Map

Imagery provided by Google and its licensors © 2018.

April 12, 2018

Fernandeno Tataviam Band of Mission Indians Rudy Ortega, Tribal President 1019 Second Street, Suite 1 San Fernando, California 91340

RE: Assembly Bill 52 Consultation for the Antelope Valley Community College District 2016 Facilities Master Plan Project, City of Lancaster, Los Angeles County, California

Dear President Ortega:

The Antelope Valley Community College District (AVCCD) is preparing an environmental impact report as part of an update to the AVCCD 2016 Facilities Master Plan (2016 FMP). The 2016 FMP is a guide for the future development of the Antelope Valley College's Lancaster campus to accommodate growth and change over the next 30 years, including recommendations for new construction, building renovation, change of use, and site development. These improvements would allow for an increase in full-time students at both the AVCCD's Lancaster campus and Palmdale Center.

The proposed project is subject to the California Environmental Quality Act and thus must comply with California Public Resources Code § 21080.3.1, or Assembly Bill 52 (AB 52; 2014), which requires local governments to conduct meaningful consultation with California Native American tribes that have requested to be notified about projects in the geographic area with which the tribe is traditionally and culturally affiliated.

The input of the Fernandeno Tataviam Band of Mission Indians is important to the AVCCD's planning process. Under AB 52, you have 30 days from receipt of this letter to respond in writing if you wish you consult on the proposed project. If you require any additional information or have any questions, please contact me at (661) 722-6526 or via e-mail at djensen@avc.edu. Thank you for your assistance.

Sincerely,

Doug R. Jensen Executive Director Antelope Valley College, Facilities Services 3041 West Avenue K Lancaster, California 93536

Attached: Project Site Map

Imagery provided by Google and its licensors © 2018.

------ Forwarded message ------From: Jessica Mauck <JMauck@sanmanuel-nsn.gov> Date: Tue, May 15, 2018 at 11:52 AM Subject: Antelope Valley Community College District 2016 Facilities Master Plan Project To: "djensen@avc.edu" <djensen@avc.edu>

Hello Doug,

Thank you for contacting the San Manuel Band of Mission Indians (SMBMI) regarding the above referenced project. SMBMI appreciates the opportunity to review the project documentation, which was received by our Cultural Resources Management Department on 30 April 2018, pursuant to CEQA (as amended, 2015) and CA PRC 21080.3.1. The proposed project area exists within Serrano ancestral territory and, therefore, is of interest to the Tribe. However, due to the nature and location of the proposed project, and given the CRM Department's present state of knowledge, SMBMI does not have any concerns with the project's implementation, as planned, at this time. As a result, SMBMI requests that the following language be made a part of the project/permit/plan conditions:

1. If human remains or funerary objects are encountered during any activities associated with the project, work in the immediate vicinity (within a 100-foot buffer of the find) shall cease and the County Coroner shall be contacted pursuant to State Health and Safety Code §7050.5 and that code enforced for the duration of the project.

2. In the event that Native American cultural resources are discovered during project activities, all work in the immediate vicinity of the find (within a 60-foot buffer) shall cease and a qualified archaeologist meeting Secretary of Interior standards shall be hired to assess the find. Work on the other portions of the project outside of the buffered area may continue during this assessment period. Additionally, San Manuel Band of Mission Indians will be contacted if any such find occurs and be provided information and permitted/invited to perform a site visit when the archaeologist makes his/her assessment, so as to provide Tribal input. The archaeologist shall complete an isolate record for the find and submit this document to the applicant and Lead Agency for dissemination to the San Manuel Band of Mission Indians.

3. If significant Native American historical resources, as defined by CEQA (as amended, 2015), are discovered and avoidance cannot be ensured, an SOI-qualified archaeologist shall be retained to develop an cultural resources Treatment Plan, as well as a Discovery and Monitoring Plan, the drafts of which shall be provided to San Manuel Band of Mission Indians for review and comment.

a. All in-field investigations, assessments, and/or data recovery enacted pursuant to the finalized Treatment Plan shall be monitored by a San Manuel Band of Mission Indians Tribal Participant(s).

b. The Lead Agency and/or applicant shall, in good faith, consult with San Manuel Band of Mission Indians on the disposition and treatment of any artifacts or other cultural materials encountered during the project.

Note: San Manuel Band of Mission Indians realizes that there may be additional tribes claiming cultural affiliation to the area; however, San Manuel Band of Mission Indians can only speak for itself. The Tribe has no objection if the agency, developer, and/or archaeologist wishes to consult with other tribes in addition to SMBMI and if the Lead Agency wishes to revise the conditions to recognize additional tribes.

Please provide the final copy of the project/permit/plan conditions so that SMBMI may review the included language. This communication concludes SMBMI's input on this project, at this time, and no additional consultation pursuant to CEQA is required unless there is an unanticipated discovery of cultural resources during project implementation. If you should have any further questions with regard to this matter, please do not hesitate to contact me at your convenience, as I will be your Point of Contact (POC) for SMBMI with respect to this project.

Respectfully,

Jessica Mauck CULTURAL RESOURCES ANALYST O: (909) 864-8933 x3249 M: (909) 725-9054 26569 Community Center Drive, Highland California 92346 SAN MANUEL BAND OF MISSION INDIANS

THIS MESSAGE IS INTENDED ONLY FOR THE USE OF THE INDIVIDUAL OR ENTITY TO WHICH IT IS ADDRESSED AND MAY CONTAIN INFORMATION THAT IS PRIVILEGED, CONFIDENTIAL AND EXEMPT FROM DISCLOSURE UNDER APPLICABLE LAW. If the reader of this message is not the intended recipient or agent responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination or copying of this communication is strictly prohibited. If you have received this electronic transmission in error, please delete it from your system without copying it and notify the sender by reply e-mail so that the email address record can be corrected. Thank You

Doug R. Jensen

Executive Director Antelope Valley College | Facilities Services 3041 West Avenue K Lancaster, CA 93536 Phone: 661-722-6526 | fax: 661-722-6514 | email: <u>djensen@avc.edu</u> <u>www.avc.edu</u> FS webpage: /administration/facilities/