Definition
Chemistry is the discipline of science that explores the physical and chemical laws that define fundamental elemental interactions and hence the composition, properties and reactivity of all matter.

Staff
To access faculty and staff, dial (661) 722-6300, then the 4-digit extension.

Dean:
 Vacant ext. 6415

Administrative Assistant:
 Wendy Cios ext. 6415

Clerical Assistant III:
 Suzanne Olson ext. 6415

Department Chair:
 Dr. Alexandra Schroer ext. 6922

Lab Technician:
 John Hoskins ext. 6273
 Jon Paul Bautista ext. 6705

STEM:
 Christos Valiotis, Director ext. 6024
 Jamie Jones, Coordinator ext. 6992
 Christopher Bellingham, Lab Technician ext. 6704

Faculty:
 Dr. Jeffery Cooper ext. 6953
 Dr. Jessica Harper ext. 6434
 Carlos Hernandez ext. 6431
 Dr. David Newman ext. 6433
 Dr. Alexandra Schroer ext. 6922

Adjunct Faculty:
To access adjunct faculty voice mail, dial (661) 722-6300, then the 4-digit number.

 V.M. Dr. Yonis Ahmed 2285
 Ramona Blanski 2235
 Dr. Daniel Evans 2441
 Dr. Kamran Ghiassi 2345
 Brian Kimball 2715
 Vinita Kulkarni 2939
 Dr. Gurcharan Rahi 2317
 Nash Saleh 2131
 Neena Suri 2076
 Michael Tinnirello 2233

Distinctive Features
Traditional teaching may be supplemented with computer and Internet-based instruction. Laboratory activities provide “hands-on” experimentation and discovery into the natural, physical and chemical characteristics of the earth and our universe. Engineering and life science applications may be presented and computer-based data acquisition and analysis may assist in some lab instruction.

Career Options
Biochemistry
Chemist
Pharmacy
(These careers require education beyond the two-year college level.)

Program Learning Outcomes

Associate in Science in Chemistry for Transfer
1. Safely collect, evaluate, and report scientific data from modern laboratory instrumentation and using standard laboratory methods.
2. Evaluate chemical bonding models to explain structures and properties.
3. Predict the outcome of chemical reactions.

Certificate Program
Certificate not applicable.

Associate Degree

Associate in Science in Chemistry for Transfer
The Associate in Science in Chemistry for Transfer (AS-T in Chemistry) degree offers students a fundamental knowledge of chemistry and its relation to science, technology, and engineering. Students will enhance their problem solving and critical thinking skills by employing scientific principles.

The Associate in Science in Chemistry for Transfer (AS-T in Chemistry) degree meets the requirements of SB 1440 for Associate Degrees for Transfer (ADT). These degrees are intended to make it easier for students to transfer to California State University campuses, but do not exclude admittance to other colleges or universities.

1. Completion of 60 semester units or 90 quarter units that are eligible for transfer to the California State University, including both of the following:
 (A) The Intersegmental General Education Transfer Curriculum (IGETC) or the California State University General Education – Breadth Requirements.
 (B) A minimum of 18 semester units or 27 quarter units in a major or area of emphasis, as determined by the community college district.

2. Obtainment of a minimum grade point average of 2.0. ADTs also require that students must earn a C or better in all courses required for the major or area of emphasis.

 *This degree may only be earned by completing the Intersegmental General Education Transfer Curriculum (IGETC) for STEM Requirements. Please consult a counselor for additional information.

Required Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>*CHEM 110, General Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 120, General Chemistry</td>
<td>5</td>
</tr>
</tbody>
</table>
Chemistry Courses

CHEM 101 INTRODUCTORY CHEMISTRY
5 units
7 hours weekly
(3 hours lecture, 1 hr SAS, 3 hours lab)
Prerequisite: Completion of MATH 102 or higher.
Advisory: Eligibility for College Level Reading and ENGL 100A.
This is an introductory study of the nature of matter and its chemical and physical transformation. An emphasis is placed on fundamental laws and principles, elements, compounds and simple chemical reactions. Examines chemical theory in the context of familiar phenomena. Theories are tested and evaluated in the laboratory. This is a general education course for non-science majors. It is an advisory for science majors who have not previously studied chemistry. Science majors who have studied chemistry should consider CHEM 110 instead of this course. (C-ID: CHEM 101) (CSU, UC, AVC)

CHEM 102 *INTRODUCTORY CHEMISTRY
(ORGANIC & BIOCHEMISTRY)
4 units
6 hours weekly
(3 hours lecture, 3 hours lab)
Prerequisite: Completion of CHEM 101.
This course is a basic study of molecular structure, bonding, nomenclature, reactivity and other physical and chemical properties of organic compounds. An emphasis will be placed on the preparations, reactions, and naming of organic and biological compounds. The laboratory generally evaluates material that is being studied in lecture. The students learn to use and interpret the data obtained by the use of general organic laboratory techniques and equipment. The course is intended for those planning to earn a degree in an allied health science or a related field. (CSU, UC, AVC)

CHEM 110 GENERAL CHEMISTRY
5 units
7 hours weekly
(4 hours lecture, 3 hours lab)
Prerequisite: Completion of MATH 102.
Advisory: Completion of CHEM 101, and Eligibility for College Level Reading and ENGL 100A.
This course is designed for students taking courses in the sciences, mathematics, and related STEM areas. It introduces the atom and its largest subatomic particles. Describes and quantifies how these particles are involved in chemical reactions, physical states, chemical energy, and bonding models. Examines chemical theory in the context of familiar phenomena. Theories are tested and evaluated in the laboratory. To succeed in CHEM 110, students are required to successfully complete CHEM 101 or one year of High School Chemistry. Algebra is used extensively to solve problems involving quantities. To be prepared to take CHEM 120, the student will need to take MATH 140 before or while taking CHEM 110. One hour of lecture time may be reserved for small group activities and analysis. (C-ID: CHEM 110) (CSU, UC, AVC)

CHEM 120 GENERAL CHEMISTRY
5 units
9 hours weekly
(3 hours lecture, 6 hours lab)
Prerequisite: Completion of CHEM 110 and MATH 140.
Advisory: Eligibility for College Level Reading and ENGL 101.
Investigates and quantifies, where possible, the kinetics, entropy, and enthalpy that underlie chemical reactivity. Relates these concepts to chemical equilibrium. Explores application of equilibrium to colligative properties of solutions, acid-base chemistry, precipitation from aqueous solutions, electrochemistry and coordination compounds. Includes a cursory introduction to the fields of nuclear, organic, polymer and biochemistry. Examines chemical theory in the context of familiar phenomena. Theories are tested and evaluated in the laboratory. One hour of lecture time is reserved for small group activities and analysis. This course is designed for science, mathematics and related majors. (CSU, UC, AVC)
CHEM 205 QUANTITATIVE ANALYSIS
4 units
6 hours weekly
(3 hours lecture, 3 hours lab)
Prerequisite: Completion of ENGL 101 and CHEM 120.
Advisory: Eligibility for College Level Reading and MATH 150.
Quantitative, gravimetric, volumetric, and instrumental methods of analysis. Stoichiometric calculations and applications of principles of chemical equilibrium to analytical problems. Laboratory accuracy is required. The theory and practice of some of the more modern techniques of instrumental method are studied. This course is applicable for students interested in working in a variety of careers including biotechnology, research, environmental laboratories, medical laboratories, crime laboratories, and government agency laboratories. (CSU, AVC)

CHEM 210 ORGANIC CHEMISTRY
4 units
8 hours weekly
(2 hours lecture, 6 hours lab)
Prerequisite: Completion of CHEM 120.
This course is a study of molecular structure, bonding, nomenclature, stereochemistry, spectral and other physical properties of organic compounds. A major topic will be the preparations, reactions and reaction mechanisms of organic compounds. The laboratory generally evaluates material that is being studied in lecture. Students learn to use and interpret the data from various equipment available in the laboratory. The course is intended for those planning to pursue a four-year degree in science or a related field. (C-ID: CHEM 150) (CSU, UC, AVC)

CHEM 220 ORGANIC CHEMISTRY
4 units
8 hours weekly
(2 hours lecture, 6 hours lab)
Prerequisite: Completion of CHEM 210.
This course is a continuation of the study of molecular structure, bonding, nomenclature, stereochemistry, spectral and other physical properties of organic compounds. A major topic will be the preparations, reactions, and reaction mechanisms of organic compounds. A short introduction will be given covering biochemical topics. The laboratory generally follows material that is being studied in lecture. The course is intended for those planning to pursue a four-year degree in science or a related field. (CSU, UC, AVC)