How to Make Teaching More Brain Compatible

Spring 2014 <u>Faculty Academy Presenters</u> Prof. Magdalena Caproiu, Ph.D and Prof. Diane Flores-Kagan Faculty Learning Specialists

Purpose for this presentation

To encourage the use of brain-based teaching strategies for the improvement of learning

<u>Background</u>

Brain-based research > a "hot" topic Joint forces (neuroscience, cognitive science, educators)

Initiatives/trends affecting education K-12 teaching standards Teacher accountability for student success Student Success Act Media, information surge, technology MOOCS

(Caine et al. xi)

What we already know that is brain related

- Learning Styles
- Multiple Intelligences

- Metacognition and Self-Regulation
- Challenges of teaching

Learning Styles

Visual verbal

Auditory مركم

Kinesthetic/tactile

Multiple Intelligences – Howard Gardner

Metacognition and Self-Regulation

- Connecting new information to former knowledge
- Selecting thinking strategies deliberately
- Planning, monitoring, and evaluating thinking processes

- Executive function of the self: intentions and choices
- Self-knowledge and self-control
- Achievement vs. under-achievement

(Baumeister, Schmeichel, Vohs 3-8)

Management of thinking

Alteration of behavior

Challenges of Teaching

- Differences of opinion re: mastery
- Recognizing complexity of student learning
- Technology and learning
- Moving from a teacher-centered approach to a student-centered approach

Making teaching and learning interesting

Overview of Learning Theories

- <u>Constructivism</u>
 Ausubel, Bloom,
 Brunner, Chickering,
 Dewey
- Behaviorism
 SKINNER

- <u>Developmental</u>
 Erickson and
 Piaget
- <u>Gender</u>
 Belenki and Perry
- <u>Social</u>
 Bandura, CROSS,
 Kolb, Maslow,
 McCarty

Constructivism and Behaviorism

Others

Natural Human Learning Process Model: The Six Stages - Dr. Rita Smilkstein

 Not knowing how to do it or how it works; just trying it

- Practice, practice, practice
- Starting to get a feel for it

 More practice, getting a better feel for it, starting to feel comfortable

"A ceiling level is as much as a person knows and can do. A learner's ceiling level rises with more practice and processing (attending to, exploring, experiencing, experimenting with, thinking about an object of learning). The learner's ceiling level rises and [his/her] dendrites, synapses, and neural networks are growing at the same time."

(Smilkstein 61)

How the Brain Processes Information

- Sensory input is received
- Dendrites send electrical and chemical signals to axon

 Synapse (gap between axon and new cell dendrite) receives neurotransmitters

Neural communication can be passed from cell to cell ("firing")

Interesting Facts – (Wolfe)

- "The "unconscious" brain is in control of the initial filtering of information" (114).
- "The matching of new input to stored information is called pattern recognition and is a critical aspect of attention" (114).
- Sustained attention to something you can't comprehend is not only boring, it's almost impossible" (117).

 "The brain is biologically programmed to attend to information that has strong emotional content first"(120).

Brain Filtering Components (Wolfe 115-121)

- Incoming stimulus is different from what is usual
- Intensity of stimuli is different (sounds and movement)
- Same sensory information has been received over and over

Habituation

 Filtered out as unimportant

Novelty

Caine and Caine's Twelve Principles of Learning

- > All learning is physiological.
- The brain/mind is social.
- The search for meaning is innate.
- The search for meaning occurs through patterning.
- Emotions are critical to patterning.
- Every brain processes parts and wholes simultaneously.

Learning involves both focused attention and peripheral perception.

Caine and Caine's Twelve Principles of Learning (cont.)

- Learning always involves conscious and unconscious processes.
- There are at least two approaches to memory.
- Learning is developmental.
- Complex learning is enhanced by challenge and inhibited by threat associated with helplessness.

Each brain is uniquely organized.

(Caine et al. 4)

Use of the Executive Functions of the Brain (Caine et al. 9, 12, 26–28, 95)

- Definition of learning
- Description of highly developed executive functions

- Actor/Learner-Centered Adaptive Decision-Making (ACADM) or "Executive Leadership Decisions"
- What enhances executive functions
 What compromises executive functions

From working memory to long-term memory

Aids to recall information:

Annotations

Notes

Flashcards

Visuals (maps, charts, etc.)

Recitation

Recordings

Manipulatives

Games

Study groups

Active learning opportunities

in the classroom

Dale's Cone of Experience

Source: National Training Laboratories, Bethel, Maine

Relaxed Alertness

"The optimal emotional climate for learning."

- It helps students do the following:
- reduce the survival response
- b discover and nourish purpose and passion
- learn to recognize the survival mode
- master the art of scaffolding

(Caine et al. 6, 24-26, 29-31)

Immersion in Complex Experience

"Learning and teaching that engages rich, experiential environments."

 Novelty, variety, feedback, opportunity for student choices

- Ideal conditions—projects, research, group work
- Orchestrated immersion to develop higher-order thinking
- Making sure students learn what they need to learn

(Caine et al. xii, 7-8, 114-120)

Active Processing

"The art of digesting, thinking about, reflecting on, and making sense of experience and of consolidating learning."

- The processing of experience
- Practice and rehearsal
- Observations and questions
- Self-regulation

Instructional Approaches

▶ #1

Traditional view of learning: memorization of facts and skills, veridical decision-making

► #2

Intellectual understanding supplemented by memorization, with some opportunities for adaptive decision-making

#3

Embedding and consolidating essential knowledge and skills in student-centered learning

(Examples of AVC applications)

Making learning meaningful

Classroom strategies that promote student-centered active learning.

<u>Think-Pair-Share Activity</u>
1. Think of a strategy you currently use (1 minute).
2. Pair with someone else to discuss it (3 minutes).
3. Share with the whole group (3 minutes).

Making learning meaningful

Classroom strategies that promote student-centered active learning:

- Setting goals
- Designing graphic organizers
- Projects with real-life applications
- Role plays, enactments
- Group work: problem solving, presentations, experiments, exhibitions, reports, scenarios, evaluations
- Process meetings
- Journals, portfolios
- Learning communities

Flexibility re: lesson plans

Works Cited

Baumeister, Roy F., Brandon J. Schmeichel, Kathleen D. Vohs.

"Self-Regulation and the Executive Function: The Self as Controlling Agent." Chapter prepared for A.W. Kruglanski & E.T. Higgins, *Social Psychology: Handbook of Basic Principles* (2nd ed.). New York: Guilford, n.d. Web.

Caine, Renate Nummela, Geoffrey Caine, Carol McClintic, and Karl J. Klimek. *12 Brain/Mind Learning Principles in Action: Developing Executive Functions of the Human Brain.* Thousand Oaks, CA: Corwin, 2009. Print.

Smilkstein, Rita. *We're Born to Learn: Using the Brain's Natural Learning Process to Create Today's Curriculum.* Thousand Oaks, CA: Corwin, 2003. Print.

Wolfe, Patricia. *Brain Matters: Translating Research Into Classroom Practice.* Alexandria, VA: ASCD. 2010. Print.