

Math Study Strategies

Completing the square

This technique can be used to solve all quadratic equations in standard form.

Follow the steps below to complete the square.

- 1) Make sure the coefficient the x^2 term is 1. If it is not, make it 1 by dividing all terms on both sides of the equation by the coefficient of x^2 .
- 2) If the constant term is not isolated (by itself on one side of the equation), isolate it now.
- 3) Complete the square
 - a. Find 1/2 of the coefficient of the x term (not the x² term) and square it. For example, if the coefficient of the x term is 6, find one half of 6 (3) and then square it $(3^2 = 9)$.
 - b. Add this number to both sides of the equation.
- 4) Factor the trinomial and solve the equation using the square root property

Example:

Complete the square to solve $x^2 + 8x + 7 = 0$

In this example, the coefficient of x^2 is understood as 1, so **Step 1** is complete.

$x^{2} + 8x + 7 = 0$ -7 = -7 $x^{2} + 8x = -7$ $x^{2} + 8x = -7$	Step 2: subtract 7 from both sides to isolate the constant
$(\frac{1}{2} \times 8)^2 = 16$	Step 3a: the coefficient of x is 8, $1/2$ of 8 is 4, and $4^2 = 16$
$x^2 + 8x + 16 = 16 - 7$	Step 3b: add 16 to both sides
$x^{2} + 8x + 16 = 9$ (x + 4) ² = 9 $\sqrt{(x + 4)^{2}} = \sqrt{9}$ x + 4 = $\pm\sqrt{9}$ x + 4 = 3 or x + 4 = -3 x = -1 or x = -7	Step 4: the left side of the equation is a perfect square trinomial, so we can factor it. Next, using the square root property, take the square root of both sides and solve for x.

(continued on next page)

