

Math Study Strategies

Radians and Degrees

Definitions

Radian: the length of the arc of a sector in a circle. Degree: the measure of the angle between the initial ray and the terminal ray.

π

Conversions

 $\frac{\pi}{180^{\circ}}$ To convert degrees to radians, multiply degrees by 180° To convert radians to degrees, multiply radians by

Examples

Convert 45° to radians.	$45^{\circ} \times \frac{\pi}{180^{\circ}} = \frac{45\pi}{180} = \frac{\pi}{4}$
Convert $\frac{\pi}{6}$ to degrees.	$\frac{\pi}{6} \times \frac{180^{\circ}}{\pi} = \frac{180^{\circ}}{6} = 30^{\circ}$

Angles in the Four Quadrants

Quadrant	Associated angle θ	Associated angle θ
	(in degrees)	(in radians)
I	$0 < \theta < 90$	$0 < \theta < \pi/2$
II	90 < θ < 180	$\pi/2 < \theta < \pi$
	180 < θ < 270	$\pi < \theta < 3\pi/2$
IV	$270 < \theta < 360$	$3\pi/2 < \theta < 2\pi$

Π Ι Ш IV

Types of Angles

Type of Angle	Angle's measure	Angle's measure
	(in degrees)	(in radians)
Acute	0 - 90	0 - π/2
Obtuse	90 - 180	π/2 - π
Right	90	π/2
Straight	180	π
Complementary	$\alpha + \beta = 90$	$\alpha + \beta = \pi/2$
Supplementary	$\alpha + \beta = 180$	$\alpha + \beta = \pi$

